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ANOTACE

Pouziti linearnich modelu pro popis realnych systému (jejichz dynamika je vétSinou nelineédrni) je konvenénim
pfistupem pouzivanym v oboru automatického ftizeni. Pomoci klasického linedrntho modelu maZeme popsat
pouze ¢ast dynamiky systému (dynamiku v okoli tzv. pracovniho bodu). Vyhoda linedrnich modelu spo¢iva v
jejich snadné analyze a snadném navrhu f{zeni pomoci metod dostupnych pro tuto tfidu modelu. Hlavni
nevyhoda téchto modeli, kromé jejich omezené platnosti, je ddna tim, Ze jejich jedinymi dynamickymi elementy
jsou integratory aproximujici soustfedéné akumulace. Z toho vyplyva, Ze popis systému s rozlozenymi parametry
(vCetné Casovych zpozdéni), se kterymi se setkdvame v technické praxi, je pomoci tohoto piistupu ponékud
problematicky. Mnohem lepSich vysledku pfi modelovani takovychto systémiu lze dosdhnout zahrnutim
dopravnich zpozdéni do struktury linedrntho modelu. Takto ziskany popis dany soustavou linedrnich
funkciondlnich diferencidlni rovnic nabizi vétsi variabilitu struktury modelu neZ klasicky popis, coZ umoZiiuje
presnéji popsat dynamiku systému. Na druhou stranu, analyza modelu s dopravnim zpozdénim a syntéza fizeni je
zpravidla sloZit&j$i nez u klasického pfistupu. Typickou vlastnosti modela s dopravnim zpozdénim je nekone¢né
spektrum vlastnich hodnot (pdlu a nul) systému. V této praci je navrZena metoda analyzy dynamiky systému s
dopravnim zpozdénim na zaklad¢ znalosti spekter pSla a nul systému. Pro vypocet pélu a nul je navrzen puvodni
algoritmus zaloZeny na mapovani charakteristickych funkci systému. Dulezitost jednotlivych pdlu je posuzovana
na zaklad¢ vahovych funkci prenosu prvniho a druhého fadu které jsou ziskdny rozloZenim prenosu systému
pouzitim zobecnéné Heavisideovy véty o rozkladu. Timto zpusobem je mozné definovat skupinu pélu (z
nekone¢né mnoziny polia) které jsou rozhodujici v dynamice systému. Uréeni dominantnich pdla systému
umoziuje nejenom analyzovat médy systému, ale také dynamiku systému vyhodné zménit pfesunutim téchto
dominantnich pdlu. Tak jako u klasickych systému, i u systému s dopravnim zpozdénim je mozné dynamiku
zmgénit zavedenim zpétnych vazeb od stavovych proménnych systému. Na druhou stranu je nutné podotknout, Ze
touto metodou muzeme umistit pouze malou ¢ast spektra pdlu. V této praci je proveden rozbor této metody
fizeni pti aplikaci na systémy s dopravnim zpoZdénim a je pfedloZena metoda ndvrhu zpétnych vazeb. Snadnd
aplikovatelnost metody pro analyzu dynamiky systému s dopravnim zpozdénim a efektivnost navrhu koeficienta
zpétnych vazeb od stavovych veli¢in pfesunutim dominantnich pdlu jsou ukdzany v aplika¢nim piikladu, kde
analyzovanym systémem je laboratorni tepelnd soustava.

ABSTRACT

In the field of control engineering, the classical approach used in modelling of the real plant dynamics is based
on the linear model given by a set of ordinary linear differential equations. Since the dynamics of the real plants
are non-linear as a rule, the linear model fits the dynamics of the plant only in a vicinity of the operational point
at which the system has been identified. The linear model is easy to handle and the control design can be easily
performed using a method available for this class of systems (models). Its main drawback, besides the restricted
validity, is given by the fact that the only dynamical elements of the model are the integrators representing the
point accumulations. Thus, using this modeling approach, it is difficult to fit the dynamics of the plants with
distributed parameters or with the transportation phenomenon involved. Much better results in modeling of this
class of systems are achieved involving time delays in the structure of the model. The model obtained in this way
consists of a set of linear functional differential equations. Such a model with more variable structure (called
time delay system) provides the opportunity to fit better the plant dynamics than delay free linear model. On the
other hand, the analysis of the dynamics of a time delay system and its control synthesis is more complicated as a
rule. The typical features of time delay systems are the infinite spectra of poles and zeros. In this thesis, the
methodology for analyzing the dynamics of time delay system is introduced based on the knowledge of the
decisive sets of spectra of poles and zeros. An original algorithm for computing poles and zeros of the system
with delays is designed based on the mapping the characteristic functions of the system. The significance of the
poles is evaluated on the basis of the weighting functions corresponding to the first and second order transfer
functions resulting from applying the generalized Heaviside expansion to the transfer function of the time delay
system. In this way, it is possible to define a group of the dynamics determining poles (from the infinite set of
poles). Assessing the group of the most significant poles allows not only the modes to be analyzed but also the
dynamics to be positively changed by shifting the most significant poles into more favorable positions. In the
same way as in the case of classical delay free systems, this shifting of the poles can be accomplished using the
coefficient feedback loops from the state variables. However, it should be noted, that using this pole placement
method, only few poles can be prescribed while the rest of infinitely many poles is placed spontaneously. In this
thesis, the features of the pole placement method using the coefficient feedback loops from the state variables
applied to time delay systems are investigated and an effective method for feedback design is presented. In order
to demonstrate that the method for analyzing the dynamics of systems with time delays and the extension of pole
placement method described in this thesis are easily applicable, an application example, in which the system
being analyzed is a laboratory heating system, is included in the end of this thesis.
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I matrix of the values of I(5,@) on the grid of nodes on 5
Im(-) imag part of -
K(s), K feedback matrix
L,D  linear mapping from € to R
M(s)  denominator of G(s), characteristic function of the system (quasi)polynomial
N(s) numerator of G(s), (quasi)polynomial
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number of zeros of the function being analysed in 5
transfer function of the model describing true real plant dynamics
number of poles of the function being analysed in 5
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residues corresponding to A;
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method
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Remark If the physical units (dimensions) of the variables are not given with the values of
the variables, these are considered dimensionless, i.e., in a range of a certain elementary units.
In this way, the variables are presented in the examples in Chapters 3 and 4.






1. INTRODUCTION, THE ACTUAL STATE OF RESEARCH AND THE
THEORETICAL BACKGROUND OF TIME DELAY SYSTEMS

Time delay systems (TDS) provide an alternative way for building the models of real
plants. Beside the integrators, involving the delays as the other dynamical elements brings
about favourable features in fitting the real plant dynamics. On the other hand, the
functionality of the system matrices (considering the linear models) results in infinite spectra
of the system poles and zeros. This inconvenient feature of time delay systems causes
difficulties in the analysis and control design of TDS.

The main topics of this thesis are the analysis of TDS dynamics based on locating the
distribution of the dominant poles and zeros and the control design of TDS based on the pole
placement using the coefficient feedback from the state variables. In chapter 1, I am going to
make an overview of the key literature sources dealing with the time delay systems. Also the
necessary background of the theory of TDS will be introduced in chapter 1. The stress will be
laid on the concept of poles and zeros of TDS and on the methods available for their
computing. Also the overview of the available methods of the pole placement based control of
TDS will be made in this chapter.

1.1 Concept of state in classical state space description, system poles and zeros
1.1.1 Description of classical (delay free) linear system

Before outlining the theoretical background of time delay systems let us briefly mention
the concept of classical linear model description. Since the very beginning of the modern
control engineering, see, e.g., Zadeh and Desoer, (1963), linear state space description has
been very valuable and frequently used tool in modelling. There are several reasons why this
description has become common in the field of control engineering. To begin with, the model
written in the linear state space description

dx(t)

= Ax(¢)+Bu(?) (LD

y()=Cx(1)

where xe R" is the vector of state variables, ue R" and ye R are the vectors of system inputs
and outputs, respectively, and Ae R™", BeR"", Ce R”" are coefficient matrices, provides
the possibility to analyse easily the basic features of the system, i.e., stability, the modes of
dynamics, controllability and observability (Ogata, 1997). Description (1.1) is also convenient
from the point of control design. In many cases, model (1.1) is the result of linearization of a
non-linear model with the right-hand side given by a general function f(x, u, 7). Such a linear
model is valid in the vicinity of the operational point in which the linearization has been
accomplished. In fact, this limited validity of the linear model has to be always taken into
consideration, even if the model has been built directly as the linear model. It is given by the
fact that the dynamics of the real plants are nonlinear as a rule. On the other hand, many real
processes retain or are kept by the controllers close to a certain system state. The description
by means of linear model (1.1) is mostly adequate and sufficient for these processes. State
space description (1.1) is also convenient with respect to the practical realization of the
model. The model consisting of a set of first order differential equations can be easily built in
a software modelling tool, e.g., Matlab, Simulink. There have been developed many powerful
numerical methods for simulation of the system in the state space description (Hairer, et al,
1990), (Hairer, and Wanner, 1999). Another convenient feature of the linear system
description is that the Laplace transform of (1.1), which follows, can be obtained very easily



sx(s) = Ax(s) + Bu(s) +x

1.2
y(s)=Cx(s) (42

where s (the complex variable) is the Laplace operator, X(s), u(s) and y(s) are the Laplace
transforms of x(7), u(¢) and y(¢) and Xy is the vector of initial conditions.

State description (1.1) is so familiar in the field of control engineering that it does not
need more comments. The objective of this chapter is to break ground for pointing out the
analogies and differences of classical model (1.1) and the model of a time delay system,
which will be introduced in section 1.2. Before turning the attention to the description of time
delay systems, let us mention the concepts of system state, system poles and zeros
corresponding to (1.1), which will be investigated more deeply for the class of time delay
systems in the further sectionss.

1.1.2 State of the system

It is well known that the state of model (1.1) at time 7y is given by the vector of state
variables x(7p). If the system state x(#) is known, any plant output can be computed at all
future times, i.e., t>f( as a function of the state variables and the present and future values of
inputs. Therefore, the initial conditions of model (1.1) are only given by the value of state
variable vector at t=0, i.e., x(0). This fact of dealing only with the actual values of the
variables brings about difficulties in describing systems with delay effects and distributed
parameters involved. The impossibility to spread the variables over the time segment of the
system last history is compensated by increasing the order of the system, i.e., introducing
additional state variables.

1.1.3 System poles and zeros

Let description (1.2) be transformed into input-output relation given by the transfer
matrix

G(s) =28 —c[s1-A]'B = Cadj[sT- AJB (1.3)

u(s) det[sT—A]

Each element of the transfer matrix is given as a ratio of two polynomials

) Nl o 1.4
Gy (s) 01 (5) M) , ..Ds .m (1.4)

The system poles 4;, i=1..n are defined as the solutions of the equation
M(s)=det(sI-A)=0 (1.5

which is called the characteristic equation of the system. It is well known, that the solutions of
(1.5), i.e., the system poles, are equivalent to the eigenvalues of matrix A. If A is an
eigenvalue of A and v is the eigenvector corresponding to the eigenvalue A, then the
following equation holds

(A-A)v=0 (1.6)

Equation (1.6) is the set of homogeneous linear algebraic equations that acquires a non-zero
solution v if the characteristic —matrix A(A)=(A-AI) is singular, ie.,



P(A)=det(A—-AI)=0, where P(A) is the characteristic polynomial of the matrix A. Let us
compare the polynomials P(A) and M (s). The first difference between P(A) and M (s) is in

their arguments. Obviously, this difference is only formal, because the operator s as well as 4
are the complex variables. The second difference is in the signs inside the brackets which is
also formal, because det(A —AI) =—det(AI— A) and both polynomials have the same roots.

With respect to this equivalence of the system poles and eigenvalues of A, the poles of the
system are also called the system eigenvalues.

As regards the physical meaning of the system poles, provided that no zero-pole
cancellation occurs, every pole generates a natural mode in the system response to any given
input. As the fast poles are referred to the poles that are farther away from the stability
boundary than the other poles. The opposite to the fast poles are the slow poles, referred to as
the dominant poles that are conversely closer to the stability boundary than the other poles
(Goodwin, et al., 2001). The poles can be either real or complex conjugate. Real poles
correspond to the non-oscillatory modes with time constants 7;= 1/4;, while complex poles
Aiiri=fEj@ correspond to the oscillatory modes represented, e.g., by the frequency @ and
damping ratio &= | B |/ 2. The lower the value of the ratio is, the less damped is the response
component corresponding to the particular mode of the system dynamics. From the stability
point of view, the stable poles are located to the left from the stability boundary, imaginary
axis, i.e., the real parts of the poles are negative. If one or more poles are located in the right
half of the complex plane, i.e., the real parts of the poles are positive, the system is unstable.

The system zeros i, i = 0,1,.. are the solutions of the equations
Ny (s)=C,adj[sT-AIB; =0, k=1..p,1=1..m (1.7)

where C is the row sub-matrix of C corresponding to the k™ output and B, is the column sub-
matrix (vector) of B corresponding to the /™ input. Unlike the system poles, which are
common for all transfer functions (1.4), each of transfer functions (1.4) has its own set of
zeros. The number of system zeros corresponding to Gy(s) is given by the degree of
polynomial Ny(s). Although the location of the system poles determines the basic modes of
the system dynamics, it is the location of the system zeros which determines the proportion in
which these modes are combined. Analogously to the system poles, it is also possible to
define fast and slow zeros. The fast and slow zeros are defined with respect to the dominant
system poles. Fast zeros are much farther away from the stability boundary than the dominant
poles and the slow zeros are those which are closer to the boundary than the dominant poles.
The fast zeros influence the system responses only slightly. On the other hand, the slow zeros
have a distinct effect on the system responses. In case of the step response, the slow zeros
cause its overshoot as a rule. The sign of the zeros is also important, however, not from the
stability point of view. The system zeros with the positive real parts are called non-minimum
phase zeros. These zeros are responsible for the undershoot of the step response of the system.
The influence of the system zeros to the system response has been studied, e.g., in
Goodwin, et al, (2001).

Finally, let us explain the concept of system modes and their roles in the system
response. In case of single poles, transfer functions (1.4) can be expanded using the Heaviside
expansion theorem

L 1 &Ny 1
Gy (s) = Res{Gy ()} =) kLT (1.8)
. Zl A s EM%)s—ﬂf

where M’(s)=dM (s)/ds . The expressions



Ny (4)

Ry (4) = ML)

(1.9)

are called residues. The residues are the weighting factors of the modes exp(A;#) in the system
responses. In case of multiple poles the residue is given by more complicated formulas that
involves higher order derivatives of M(s), see Angot, (1952). The transfer function Gy(s) is
the Laplace transform of the weighting functions gy/(¢), which are the response to the Dirac's
delta function in case of zero initial conditions. Hence, if the impulse (Dirac's delta) is applied
to the input u; of the system with zero initial conditions, the response of the output y; is equal
to the weighting function

g (=" Ry (A)exp(4) (1.10)

i=1

Obviously, the values of the residues define the roles which are played by the corresponding
modes exp(A;f) in the particular input-output relation.

1.1.4 Computing the system poles and zeros as the polynomial roots

The problem, which should also be mentioned in connection with the concept of poles
and zeros of system (1.1), is the way of their computing. If the system is of the second order,
the characteristic equation has the form of the quadratic equation the solution of which is well
known'. There are available analytical based algorithms for solving the task for third and
fourth order polynomials, but the formulas are much more complicated. It has been proved
that there are no such analytical formulas for polynomials of order higher than fourth.
Therefore, a numerical method has to be used to compute the roots of these higher order
polynomials. There exist many algorithms that can be used to solve this problem (from the
recently appeared ones let us mention MP-solve (Bini and Fiorentino, (1999, 2000) and
Eigensolve (Fortune, 2001)), but none of them can be said to be complete from both the
theoretical and the practical point of view. Computing polynomial roots becomes more
difficult with increasing order of the polynomial. Although there are many open problems that
should be solved in this research field, nowadays it is possible to compute the roots of
polynomials of considerably high orders by means of available algorithms. In case of the high
order polynomial, special numerical iteration methods based on high precision computing has
to be used. Some of the practical aspects of solving polynomial equations are discussed in
Peters and Wilkinson, (1971) or Wilkinson (1963). The overview of the huge literature
dealing with the problem of computing the roots of polynomials can be found in Pan, (1997).

Alternative way of computing the system poles is based on the fact that the concept of
system poles is equivalent to the concept of matrix A eigenvalues. Especially for higher order
systems (1.1) (from the numerical point of view), it is not convenient to compute the
determinant of the system characteristic matrix, and then to find the roots of the obtained
polynomial. Most of the algorithms for evaluating the determinant do not use the determinant
definition formula (Rektorys, 1994), which consists of n! summations of products of n matrix
coefficients. Such a determinant evaluation is rather computationally demanding already for
n>3. The more favourable approach consists in the transformation of the matrix into the
diagonal matrix (for example using the Gaussian elimination). Consequently, the determinant
is given by the product of the diagonal elements of the diagonal matrix. Although not so many

' Already Babylonians and Egyptians (about 2000 B.C.) used the familiar formula for solving the
quadratic equation (Rhind or Ahmes papyrus)



arithmetic operations have to be done as in the case of using the determinant evaluation
formula, their number is high anyway. Accumulation of the truncation errors throughout this
computation can result in non-negligible errors in resultant spectrum of the roots. Moreover,
the higher order polynomials are likely to be ill-conditioned, i.e., even very small changes in
their coefficients can result in obtaining a considerably changed spectrum of the roots, see
(Wilkinson, 1984). To avoid this failure, a method for computing matrix eigenvalues of A is
to be used, e.g., LR, QR, methods for smaller rather dense matrices or an iterative method for
possibly very large and sparse matrices, see (Wilkinson, 1965), Demmel, J., (1997) and the
practical guide (Bai, 2000). From the available software packages for computing matrix
eigenvalues, let us mention LAPACK (Anderson, et. al., 1999), whose subroutines are used in
the commonly used software tool Matlab. It should be noted that many algorithms for
computing the roots of polynomials are based on computing the eigenvalus of the polynomial
companyon matrices (e.g., the function roots in Matlab).

1.2 Models of linear TDS, motivation, development overview and introductory remarks

Classical system description (1.1) consists of a set of state and output equations. The
only dynamical components of the description are the integrators on the left-hand side of the
state equations. There are not any dynamical relations on the right hand side of the state
equations. This fact is rather restrictive in formulating the model of a plant. All the system
dynamics, which are time-distributed as a rule, has to be modelled by point accumulations in
the state equations. This approach often results in a model in which some or all the state
variables are artificial without a physical meaning. On the other hand, description (1.1) is
convenient for building the comprehensive mathematical or control theories. There has been
published a great deal of papers and books in the field of control engineering, in which model
(1.1) is used as the fundamental model for describing real plants. The question is whether
model (1.1) is so widely used because of its good features in describing the plants or whether
it is because the model is easy to deal with. Taking into account the rather restricted potentials
of model (1.1) in describing real plant dynamics. However the model is often chosen for the
plant description because it is easy to handle. From the engineering point of view, the aim
should not be to obtain nice results, but to achieve a progress in practical control applications.
Therefore a more complex model should be used in practice.

The alternative linear system description that involves besides the integrals also other
dynamical elements, time delays, shows much better potentials in describing real plants.
Using the lumped and distributed delays provide the possibility to choose the state variables
as the available (measured) system outputs, see, e.g., Zitek, (1998). Using the delays in
modelling allows us to separate the plant dynamics into the parts and each part to describe by
a few (preferably one) first order functional state equations. On the other hand the theory of
the systems with time delays is more complicated.

First, let us briefly outline the historical development of the theory of TDS. The
fundamental theories and the mathematical formulations were developed in twentieth century
starting with the research of Voltera, who formulated differential equations with the past
states of the system. Voltera, used this new concept of modelling to describe the predator-prey
and viscoelaticity phenomena. In the study of ship stabilization, Minorski (1942) pointed out
the importance of the consideration of the delay in the feedback mechanism. The basic theory
of the stability of delay differential equations was developed by Pontryagin (1942). The
increased interest in control theory during forties and fifties of the last century, contributed
significantly to the rapid development of the theory of differential equations with time delays.
Consequently, several books appeared providing the comprehensive introduction to the
theory. In his book, Myshkis (1955, in German, translation of the 1951 Russian edition),



(1972), introduced a general class of differential equations with delayed arguments. The main
ideas of the theory had already been published by Mishkis in (1949) (in Russian, translation to
English (1951)). This publication can be considered as the pilot-work in the field of time
delay systems providing the compact basis of the theory. From the further books, the
monographs of Bellman and Dankis (1954) and Bellman and Cooke (1963) can not be
omitted. The first monograph deals with the theory of linear equations, the stability theory and
the application areas are extended to biology and economy. The second monograph belongs to
the class of monographs that can be considered as the fundamental source of the knowledge in
the field of time delay systems. In this book, the more extensive development of the theory,
based on the frequency domain approach, can be found. The problem of stability was further
developed and presented by Krasovski (1959) (in Russian, translation to English (1963)). In
his monograph the extension of the theory of Liapunov functionals to functional differential
equations was presented. To finish this overview, let us only mention the other important
monographs in the field of time delay systems written by Pinney (1958), Halanay (1966)
(qualitative apects), El'sgol'c and Norkin (1971) (time-varying delays, in Russian, translation
to English 1973), Yanushevski (1978) (control, in Russian), Hale (1977) (general theory,
neutral systems), Kolmanovskii and Nosov (1986) (stability, application examples), Gorecki,
et al, (1989) (analysis and synthesis) and Diekman, et al, (1995) (operator theory approach).
The recent comprehensive introductions are (Kolmanovskii and Myshkis, 1992) and Hale and
Verduyn Lunel (1993).

Time delay systems belong to the class of infinite dimensional systems (Bensoussan, et
al, 1993). The modelling approach using time delays is largely used to describe propagation
and transport phenomena, which can be met in the applications throughout the fields of
mechanical, chemical and electrical engineering. Other typical areas of the application of time
delay systems are populations dynamics (Kuang, 1993) and the economics. From the
mathematics point of view, there are several approaches to describe such systems, e. g., by
differential equations on abstract and functional spaces, or over rings of operators. As regards
the differential equations on abstract linear space of infinite dimension (Bensousan, et al,
1993), (Curtain and Zwart, 1995), it is rather general mathematical approach that makes
possible to treat the systems described by functional and partial differential equations in the
same way, generally called distributed parameter systems. The discussions on such
approaches and the system classification can be found in (Curtain, et al., 1989, 1993) and in
Delfour (1981). Although the approach is very general, the methods are not always easy to be
applied to a specific practical problem. In the second possible approach the functional
differential equations are used. The system can be considered either as evolutions in a finite-
dimensional space (vector space interpretation), (Kolmanovskii and Nosov, 1986) or in a
functional space (Hale and Verduyn Lunel, 1993). In both cases, the initial conditions are
always defined by functions. In this approach, the analogy of the functional description, with
the finite vector space, with the classical description (finite dimensional) is utilised. Thus, the
advantage of this approach is that some tools developed for finite-dimensional systems can be
used to analyse the functional systems. However, the specific features of the TDS, i. e.,
functionality, infinite spectrum, have to be taken into consideration. The idea of using the
finiteness of the space vector is also utilised in the third mentioned approach, where the
functional differential equations are defined over a ring of operators (Kamen, 1978a) and the
theory of systems over rings is used (Kamen, 1978b). The approach is advantageous in case of
commensurate delays where the system is considered over the polynomial ring involving the
delays. Another possibility is to represent the systems as differential equations over a ring of
distributions using convolution operators (Kamen, 1975, 1978a), which allows the initial
conditions to be involved in the model. The more comprehensive review of the modelling
approaches can be found in Niculescu, (2001). In conclusion, regarding the questions of



generality, conventionality and the applicability for describing real plants, the approach using
the functional differential equations seems to be the most suitable one. Therefore, this
representation of the system and particularly the approaches presented in the monoghraphs
Goérecki, et al., (1989) and Hale and Verduyn Lunel, (1993) will be used in this thesis.

1.2.1 Description of TDS, neutral and retarded functional differential equations,
the anisochronic approach

A general description of a linear time delay system can be considered in the following
functional form, (Gérecki, et al., 1989)

N
ax(t) _ Agx(t) +Bou(r) + Z{Hi ax—1;) Ax(t—n,)+Bu(r - 77,.)} +
& d
T T
+ j A(DX(t - 7)dT+ j B(D)u(t — 7)dt (1.11)
0 0
y(t) = Cx(1)

where xeR", ueR", yeR’ and A;, A(7), B;, B(7), H, C are matrices of compatible
dimensions, 7 <7, <...<ny <T are the values of the lumped delays and the integrals in

(1.11) describe the distributed delays involved in the model. Actually, in Gérecki, et. al.,
(1989) and also in, e.g., Hale and Verduyn Lunel, (1993), the integrals in (1.11) have the form

I?TA(T)X(I+T)dT and I?TB(T)X(I+T)dT. Thus the delay variable 7 has the opposite sign

than in (1.11) and the functional matrices A(7) and B(7) are defined on the interval [-T, O]
instead of [0, T as in (1.11). The advantages of the functional matrices defined on the interval
[0, T] can be found in Diekman, et al, (1995), section 1.2. The approach has also been used,
e.g., in Zitek, (1986). Since model (1.11) involves the system history, the initial conditions
can not be only given by the values of the state variables at time =0, but the initial conditions
are predetermined by the functions @, xand ¢ (of the particular dimensions, as will be shown
further, the state space is Banach space)

x(1) = (1)

=D _ o) te[-T,0] (1.12)
dt

u@®)=4(@)

On its right hand side, description (1.11) does not only have the miscellaneously shifted
state and input variables, but also shifted derivatives of the state variables. Such a time delay
system description is called neutral, and the systems described by (1.11) are referred to as the
neutral systems, (Kolmanovskii and Myshkis, 1992), (Kolmanovskii and Nosov, 1986), (Hale
and Verduyn Lunel, 1993). Neutral functional differential equations (NFDE) are largely used
for describing lossless propagation phenomena, see Niculescu, (2001), which is encountered,
e.g., in modelling of distributed networks. In this application of NFDE, the connection of
NFDE with partial differential equations of the hyperbolic type (which is the classical tool for
describing the propagation phenomena) is used.

Neutral system (1.11) becomes a retarded one if H=0,i=1, 2, ... N



ax(t) N
= Agx(t) + Bou(t) + Y _[Ax(t —77,) + Bu(t —17,]+
i=1
T T
+ j A(DX(t - 1)dT+ j B(D)u(r — 7)dt (1.13)
0 0
y() = Cx(1)

The initial conditions of system (1.13) are analogous to (1.12). Describing plants by
retarded functional differential equations (RFDE) can be encountered in more applications in
modelling and control engineering than the describing the plants by NFDE. The typical areas
where the RFDE are applied are heat transfer, chemical and combustion processes, and the
physical processes where the transportation phenomena and distributed parameters are
encountered. The theory of RFDE is more developed than the theory of NFDE and its results
can be found already in publications (Krasovskii, 1963), (Halanay, 1966) and in more recent
ones (Kolmanovskii and Myshkis, 1992), (Hale and Verduyn Lunel, 1993).

Using Rieman-Stieltjes integrals (Kolmogorov and Fomin, 1999), the notations of
equations (1.11) can be written in the form

dx() [ dxt-m)] T B
P _Z[Hlidt } !;dA(r)x(t o)+ .([dB(T)u(t 7) (1.14)

i=1

and analogously (1.13) can be written in the form

dax(t)
dr

T T
j dA(D)X(1 - T) + j dB(T)u(r —7) (1.15)
0 0

respectively. The use of Rieman-Stieltjes integrals allows both the lumped and the distributed
delays to be involved in one convolution. It is possible to do so because of the following

feature of the integral. Let us consider the function f{ 7) which is continuous on the interval [a,
b], Rieman-Stieltjes integral results in

b
[r@dgm =Y re (1.16)

if function g(7) is step function with the step sizes /; in 7, and in
b b
[r@de@ =] r@g @ar (1.17)
a a

if function g(7) is continuous. In general, the continuity of f( 7) is necessary condition for using
the Rieman-Stieltjes integral, but the functions g(7) and g’(r) can be only piecewise

continuous with a finite number of finite step discontinuities of g(7) on [a, b]. The definition
and other features of Rieman-Stieltjes integral can be found in, e.g., Kolmogorov and
Fomin (1999). Thus regarding the previous definition, the functional matrices in (1.14) and
(1.15) can be defined as



aq ld“(T) ..... alndln(f) blldull (T) ..... b]mdulm (T)
A(r) = - - - , B(7)= — — — (1.18)

and, (7).....a,,d,, (T) bdy (T)....byd, (T)

where d;(7) and duik (7) are the normalised monotonous functions of delay distributions

(d(r)=0,Vr<0and d(7)=1, V7 >T), piecewise continuous with a finite number of step
discontinuities, see Zitek, (1986).

Rather unusual description of time delay systems introduced in the previous text
acquires more convenient form after applying the Laplace transform. Considering the zero
initial conditions, the L-transform of neutral system (1.14) and retarded system (1.15) are of
the following forms

N
sx(s) =| s ) [H;exp(=s7,)]+A(s) [x(s)+B(s)u(s) (1.19)
i=1

sx(s) = A(s)x(s) +B(s)u(s) (1.20)

where the transform functional matrices are given by the Laplace-Stieljes integrals
T T
A(s) =[exp(=s 1)dA(7), B(s) =[exp(~s)dB(2) (1.21)
0 0

The assumption of zero initial conditions implies restrictions with respect to the analytical
solution. However, because of the functionality of the initial conditions, obtaining the analytic
solution using the Laplace transform is rather tedious, see (Goérecki, et al., 1989). The benefit
of the transform is in the possibility to use the algebraic and matrix operations in the system
analysis. The L-transform of retarded system (1.20) is formally identical with the transform of
classical system (1.2). On one hand, this analogy can be utilised in the system dynamics
analysis and control design. However, on the other hand, the functionality of the matrices
brings about some indispensable drawbacks, particularly the infinite spectrum of spectra of
poles and zeros, the difficult isolation of the important modes of the system dynamics and the
causality of the designed control.

The novel modelling approach called anisochronic model formulation, which has been
developed by Zitek (1983, 1986), is based on model with Stieljes integrals (1.15). The main
idea of the approach consists in involving all the system delays in one convolution. The
objective of the approach is to define true distribution of the system dynamics within the state
equations of the model. Using the various distributions of delays, the number of integrations
(lumped accumulations) in the model is considerably reduced. The aim of the approach is not
only to obtain a low order model, but also to obtain the model in which some of the state
variables are identical with the system outputs. This identity of the state variables and the
system outputs is the essential feature of the anisochronic modelling approach. This feature is
advantageous especially in applying the state feedback control, because no observer is needed
for estimation of the unmeasured state variables. From the publications dealing with the
control problem based on anisochronic model formulation, let us mention Zitek, (1997),
Zitek, et al., (1995, 2001), Zitek and Vyhlidal, (1999, 2000), where the problem of state
feedback control of time delay systems is worked out. The potentials and limits of
anisochronic internal model control are studied in Zitek and Hlava (1998, 2001),



Hlava (1998). In Vyhlidal and Zitek, (2001), the properties of anisochronic first order models
are analysed and an identification method of the model parameters is proposed. As has been
shown in Zitek, (1998a), Zitek and Garagi¢, (1997), the observers based on the anisochronic
model formulation are suitable to be applied in the fault detection and diagnosis. The
separability of the parts of the anisochronic model, usually corresponding to the physical parts
of the particular plant, provides the possibility to perform the decomposition of the observer
into several local observers.

1.2.2 The notion of state of TDS

Unlike the state of classical system (1.1), which is given by the vector of state variables
x(1), the state of a time delay system (1.11) is given by the function segments of the system
state variables and the system inputs {x,, #,} on the segment of the last system history, see,

e.g., Gorecki, et. al., (1989), Zitek, (1998) where
x,(0)=x(t+7),u,(t)=u(t+7) -T<7<0 (1.22)
and the state space is the Banach space of continuous real functions on the interval of length T
C=C([-T, 0],R") (1.23)

provided with the supremum norm, i.e.,

¢|| = max_TSfSO|¢(T) , see Hale and Verduyn Lunel,

(1993). In many publications dealing with the TDS, the delay in the inputs are not considered
or features of autonomous systems are investigated (the system inputs are not involved in the
model). The state of such system is obviously given by x,. This notion of state has already

been used by Krasovskii, (1963), and the state theory of the class of linear functional
differential equations of the retarded type has been further developed by Delfour (1977).
From the more recent publications dealing with the concept of state and the state theory of
TDS, let us mention (Hale and Verduyn Lunel, 1993) and (Diekman, et. al., 1995). The state
given by a function element of the last history coheres with the definition of initial conditions,
which are also defined as elements of functions ¢@.

1.2.3 Linear autonomous TDS, the shift semigroup

Investigating the class of autonomous systems provides the opportunity to analyse the
homogeneous system dynamics, i.e., the dynamics of the systems with inputs. In Hale and
Verduyn Lunel, (1993) and Diekman, et. al., (1995) the description of the autonomous
systems and their analysis on the basis of the solution operators is investigated. The
autonomous system corresponding to RFDE (1.15) is of the form

dt
x(1)=@(t) te[-T, 0]

T
dax(t) ~
! dA(D)X(1 - T) (124)

Following the mentioned literature sources, let us introduce an alternative system description

dx(t)
dt
Xg=@

t>0
bx, 1> (1.25)



where £ is a continuous linear mapping from € to R”, satisfying
T
Lo = fdé.” ©)p(-0), ¢C (1.26)
0

where function { is defined on [0, T] with values in R™", whose elements are of bounded
variation, normalised so that {is continuous from the right on [0, 7] and £{(0)=0.

Remark 1. The bounded variation is defined as follows: Let us consider the function f{7) that
is said to have bounded variation over the closed interval 7€ [a, b], if there exists M such that

\f (7)) —a|+|f (22) = f (7| + ...+ |f (7p) — [ (T,_)| S M for all a<Ti< B<...< G1<b.

Remark 2. Let function f be of bounded variation with countable number of discontinuities.
Function f is continuous from the right on the open interval (a, b) if f(7)= f(7+), where
f(t+)=limg,; f(0), at every point 7€ (a, b) .

Regarding the features of distribution functions dj(7) of A(7) in (1.18), the functions
satisfy the previous definitions, therefore, it is possible to rewrite (1.26) into

T
1p=[dA©)p(-6), peC (1.27)
0

Let us also introduce the concept of the solution operator 7°(¢). There exists a family
T ={T(t)} of bounded linear operators on a Banach space such that
(1) T(0)=1I (the identity matrix)
G) TOT(p)=T(t+p) fort,p=0 (1.28)
(iii) lim [I"()p—@|=0, ¢eC
t—0

This family 7is called the strongly continuous semigroup, in short, a (5-semigroup, see Pazy,
(1983), which is given by the translation along the solutions of (1.24). Consequently, the time
evolution of the state x; is given by an abstract ordinary differential equation in the infinite
dimensional state space €. The abstract differential equation can be expressed in the form

(T (0)9) = AT 1)9) (1.29)
where

Ap = lim %(f<r>¢—¢) (1.30)
with

:z>(f1)={¢,|% Hhmo (rt)p—0) exists} (1.31)

i.e., XA consists of all ge € for which the limit in (1.31) exists. The linear operator

A NA— ¢ which is the derivation of 7°(z) at r=0 and is, in general, unbounded, is called
infinitesimal generator of the semigroup. For system (1.24) the generator is defined as follows



T
:b(ﬂ>={¢l¢’ecq—r, OLR"), ¢(0)= jdA<e>¢<—e>}; Ap=¢  (132)
0

The state x; of the autonomous system at time ¢ is uniquely determined by the initial condition
function ¢, i.e. state at ¢ = 0, by the solution operator, thus

THe=x, @ecC (1.33)

i.e., operator 7 (r), maps the initial state @ at time zero to x,. According to definition (1.32),
description (1.24) can be rewritten into

ixt =Ax;,t>0
dt (1.34)

Xo=¢

As will be shown further, discretizing either the solution operator or the infinitesimal
generator # is one possible way of computing the approximate values of the poles of retarded
systems. More detailed definitions, further information and applications based on the
semigroup theory can be seen, besides the literature which have been already mentioned, in
Curtain and Pritchard, (1978), Verduyn Lunel, (1995, 2001a and 2001b), Hale and Verduyn
Lunel, (2001), or Mastinsek, (1994).

The operational description analogous to (1.25) can also be used for description of the
neutral systems, see (Hale and Verduyn Lunel, 1993)

iﬁxt =Lx;, >0
dt (1.35)

Xg=@

where  and D are bounded linear mappings from € to R”, where 1 is defined by (1.26) and

T
Dp = 9(0)- [dv(©@)p(-0), 9 C (1.36)
0

see Hale and Verduyn Lunel, (1993). The difference equation associated with (1.35) and
(1.36) is given by 2x,=0, i.e.

T
x(1) = j dv(O)x(t — ) (1.37)
0

For any @ C for which D@ = 0, there exists a unique solution x(¢) of (1.37) which is

continuous on [-7, 0] and satisfies xo=¢. For the NFDE in the form (1.11), (1.14), equation
(1.37) acquires the following form

N
x()=Y Hx(t-m), t20 (1.38)

i=1



see also Hale and Verduyn Lunel, (2002). The state of the NFDE has the same notion as the
state of RFDE and the solution operator is again given as the solution map 7(¢): €— Cwith
the infinitesimal generator defined as

D) ={p1¢ e CU-T, OLRY), DY'=14}; Ap=¢ (1.39)
1.2.4 Poles and zeros of TDS

The definition of poles and zeros of system with time delays is analogous to their
definition for classical system (1.1). Considering general TDS of form (1.14), the input output
relation arising from the state description is of the form of transfer matrix

(s) N h
s
G(s) = % =C|s@-Y [H;exp(-sn)) - As) | B(s) (1.40)
i=1
The poles A4; and the zeros y; , i =1.00 of retarded system (1.15), (H; =0, i=1..N ) are the
solutions of the following equations

M (s)=det(sI - A(s))=0 (1.41)
for the system poles and

Ny (5)=C; adj[sI = A(s)B;(s), k=1..p, [=1..m (1.42)

for the zeros of transfer function Gy ;, where C; is the row sub-matrix of C corresponding to

the k™ output and By(s) is the column sub-matrix (vector) corresponding to the / input. In
case of neutral system (1.14), the equations acquire the form

N
M (s)=det(s(X— Y _[H; exp(=s7,)]) - A(5)) =0 (1.43)

i=1

N
N (s)=Cyadj s(=)_[H; exp(=s7,)) — A(s) [By(s)=0 (1.44)
i=1

Also in case of TDS, the location of the system poles determines the stability and the
modes of the system dynamics. Therefore, let us turn the attention to the features of
characteristic equation and its solutions, the system poles.

The characteristic equations of both retarded and neutral systems are transcendental.
Therefore, in contrast to the characteristic equation of classical system (1.5), (1.41) and (1.43)
have infinitely many solutions. The transcendental character of the equations arises from
functionality of the terms Qi(s), i=1..n, see (1.45), of the powers of s. Thus, the characteristic
function is not polynomial, but it is of the quasipolynomial form

M(s)=>_5'0;(s) (1.45)
i=0

If the system is retarded, Q, is a constant. The following stability condition is identical with
the stability condition of classical system (1.1). A system with time delays is stable if and



only if all the solutions of its characteristic equation are located on the left half of the complex
plane, see, e.g., Hale and Verduyn Lunel, (1993), Zitek, (1986) i.e.

{4 e C: Re(4)>0, M (A4)=0}=0 (1.46)

For the retarded systems the following theorem holds: Let all the poles of system (1.15) be
ordered in a sequence Ay, A, .... , A4 with respect to their magnitudes, |4l—o as k—»co. The
real parts of the poles are uniformly bounded from above and for any real a, the number of
poles whose real parts are greater than a is at most finite. All the poles have finite
multiplicities. For proofs see Hale (1977) and Myshkis (1972). The feature of the finite
number of the poles whose real parts are grater than an arbitrarily chosen a is very important
because it allows us to define the set of system poles which are decisive in the system
dynamics with respect to the stability of the system and its basic features. There also exist
other rules for the pole distribution, but they are mostly valid only for a class of retarded
systems, see Bellman and Cooke, (1963), Kolmanovskii and Myshkis, (1992) and also Levin,
(1964). One of the features that is also valid for the retarded systems of form (1.15) and (1.24)
is the following, see Stépén, (1989). Consider the sequence of A defined above, Re(A;) — -oo,
as k—oo. The poles of a retarded system are mostly distributed as a finite number of
(asymptotic) chains of the poles. The origins of these chains are the right most poles, which
are close to the real. All the chains depart asymptotically from their origins, which are close to
the real axis, to the left with increasing values of |4l. As will be shown further, the finite
number of right most poles is the crucial feature of retarded systems with respect to a control
system design based on pole assignment. Also the significance of the right most poles will be
taken into consideration and a criterion evaluating their significance will be introduced.

Let us turn the attention to the poles of neutral systems. The poles of the neutral systems

display very different properties than the poles of the retarded systems, see (Hale, 1977). Let
us demonstrate the difference on the following simplified description of a neutral system

dax(t) _H, ax(t—1)

+Ax()+AXx(t—7T 1.47
2 7 oX() + Ajx(1 — 7) (1.47)

As can be seen in Stépan, (1989), if all the eigenvalues of H; are not zero, the system poles
are distributed between two horizontal boundaries, i.e., a<Re(4,)< B, k=12,...,0.

Another very important feature of this class of neutral systems is bound up with the solutions
U, of the equation

D(s) = det[I - H, exp(-s7)] =0 (1.48)

If there exists a sequence of poles A; of system (1.47) such that |4;l—co as k—oo, there also
exists a sequence U of the solutions of (1.48) such that (A4-1) —0 as k—»eo. Thus the
necessary condition for the stability of neutral system (1.47) is the stability of the part
corresponding to (1.48). The mentioned features of the distribution of the poles are the typical
features of the neutral systems. In general, investigating the spectrum of (1.48) provides the
crucial information about the stability and stabilizability of the neutral system. For more
general neutral system (1.14), the equation equivalent to (1.48) is of the form

N
D(s) = de{l =Y H; exp(-s7 )} =0 (1.49)
k=1



Analysis of spectrum of (1.49), its features and its impact to the spectrum of neutral system
and thereby to the system stability has been studied, e.g., by Henry (1974), Avelar and
Hale (1980) and Michiels, et al, (2001). Most of the results in the mentioned literature have
been investigated for the scalar case for which

N
D(s)=1-) a; exp(=sm;) =0 (1.50)
k=1

and then generalised for (1.49). D(s) in (1.50) is called exponential polynomial and its
spectrum, as well as the spectrum of (1.49), is called essential spectrum of the neutral system.
It has been proved (Avelar and Hale, 1980) that the essential spectrum may be very sensitive
even to infinitesimal changes in delays. The arbitrary small changes in the delays may
destabilise the system. Let us denote the smallest upper bound of the essential spectrum as

¢ =sup{Re(s) : D(s) = 0} (1.51)

The upper bound generally does not only depend on the values of the delays, but it also
depends on their relationship. Moreover the supremum of the spectrum can change
discontinuously with respect to the delays whereas the individual delays change continuously,
see, e.g., Avelar and Hale (1980). In order to deal with the features of the essential spectrum,
the concept of rationally dependent and independent delays has been introduced. The limit
case of rationally dependent delays are the commensurate delays, for which equation (1.50)
can be rewritten as a polynomial in exp(-sr) (r is the common divisor of the delays). For
commensurate delays, the spectrum consists of finite number of solutions that are periodic
with respect to 2wi/r, i=1, 2,.. . On the other hand if all the delays are rationally independent,
¢ satisfies the condition

N
1= |ag[exp(=cm; ) =0 (1.52)
k=1

for proof see, e.g., Michiels, et al., (2001). In Avelar and Hale (1980) the dependence of the
spectrum on the mutual ratio of the delays is demonstrated on the following example.
Consider the difference equation

x(1) ==0.5x(t — (1, + €)= 0.5x(t —17,) (1.53)
with the exponential polynomial

D(s) =1+ 0.5exp(=s(7; +€)) + 0.5exp(=s77,) (1.54)

where 7y =1 and 7, = 2. If £€=0, (1.54) is quadratic equation in exp(-s) and the upper bound
of the spectrum is given by ¢ = - In(2)/2, which is identical with the real parts of all the
eigenvalues of (1.54). If € is considered irrational, i.e., the delays are rationally independent,
the upper bound can be calculated by means of (1.52) from the equation

1-0.5exp(—c(e)(1+&))—0.5exp(—2c(€))=0 (1.55)

For £—0, the upper bound is given by [limg -0 c(8)=0]>[c(0)=—ln(2)/2]. Hence c(&)

changes discontinuously with respect to € and even infinitesimal delay change & brings the
system to the stability boundary. From the robustness point of view, it is necessary to consider
the delays as rationally independent in order to obtain a reliable upper bound of the spectrum.



Even if the delays are identified in a real system as rationally dependent, there always exists
certain uncertainty in their values that could result in the loss of stability. Therefore, it is
necessary to introduce a new concept of stability for the neutral systems. In Hale, (1977),
Hale and Verduyn Lunel (2002), the so-called strong stability is defined as follows. The
difference equation is strongly stable if it is stable for all variations in the delays. In scalar
case (1.50), the system is strongly stable if and only if

N
Y lax] <1 (1.56)
k=1

see Avelar and Hale (1980). Thus difference equation (1.53) is not strongly stable for 7;=1
and 7,=2 although all the eigenvalues of (1.54) are located on the left half of the complex
plane. The formula analogous to (1.56) exists also for the n-dimensional neutral systems with
difference equation corresponding to (1.50). This formula, other features and the theoretical
background for analysis of the neutral systems on the basis of the operational calculus will be
shown and explained in the next section.

To sum up, the spectrum of poles of the neutral systems has very different features
comparing to the spectrum of the retarded systems. The key feature of the neutral systems is
that the number of their unstable poles does not have to be finite as it is in case of the retarded
systems. In the spectrum of the neutral systems, the poles constitute the chains that do not
asymptote to -oo in the real parts of poles as a rule, but they are more or less parallel (at least a
part of the spectrum of the poles) to the imaginary axis (located in a vertical strip of the
complex plane). The important information about the stability of the neutral systems provides
the analysis of the essential spectrum and especially its behaviour with respect to the changes
in the delays. The importance of the essential spectrum is given by the fact that the spectrum
of the neutral system asymptotes to the essential spectrum.

As regards the system zeros, their distribution is also important for the final input-
output dynamics of TDS. The role of the zeros is identical as in the case of classical system
(1.1). Their significance is also considered with respect to their positions towards the
dominant poles. The number of system zeros depends on the structure of the system
description. If there are no terms corresponding to the L-transform of delays in equation
(1.42) and (1.44) the number of zeros is given by the highest power of s operator. Otherwise
the spectrum is infinite and equations (1.42) and (1.44) have the analogous features as (1.41)
and (1.43). The character of the spectrum depends on the term or coefficient corresponding to
the maximum power of N(s). If the maximum power of N(s) is multiplied by a constant
coefficient, the spectrum system zeros, i.e., the spectrum of roots of N(s), has analogous
features as the spectrum of poles of the retarded system. If the maximum power of N(s) is
multiplied by a term (given by Laplace transform of delays), the spectrum of system zeros has
analogous features as the spectrum of poles of the neutral system.

1.2.5 Spectrum of infinitesimal generator and solution operator

In section 1.2.3, the concepts of the solution operator 7 (f) and the infinitesimal
generator of the semigroup -7 have been introduced. Both these operators determine the
dynamics of the autonomous system. Therefore, investigating their spectra provides important
information about the system and about its asymptotic behaviour. First, let us consider
retarded system (1.24). The spectrum of infinitesimal generator 7 consists of the eigenvalues
only, i.e., complex numbers A satisfying /@ = A¢@ for some nonzero @ge C The spectrum of
eigenvalues is given by



o(A)={1e C, detA(1) =0} (1.57)

where A(A) is so-called characteristic matrix of (1.24)

T
A(2) = AL~ [ exp(~A)dA(7) (1.58)
0

Obviously, the spectrum of the generator 7 is identical with the spectrum of system poles,
compare (1.57) and (1.58) with equation (1.41). The spectrum of the solution operator is
according to Henry (1974), see also Kaashoek and Verduyn Lunel, (1994),

o (T (1)) = {exp(At), A€ o(A)} plus possibly {0} (1.59)
The asymptotic behaviour of the semigroup 7(f) is determined by the spectral radius of 7°(¢)
ro(T'(1) = max{y]e C:ye a(T'(1)}=suplexp(Re(4)), A€ o (A)} (1.60)

If r«(7°(1))<1, then the system is exponentially stable. If ro(7°(1))>1, there are exponentially
unbounded orbits and 7°(¢) is unstable. Obviously, the condition r«7 (1))<1 is equivalent to
the stability condition max{Re(A), A o(+A)}<0. As will be shown later, discretising either the
semigroup 7 (¢) or its generator # corresponding to a retarded system is one possible way of
computing the approximation of the right-most system spectrum.

Let us turn the attention to the analysis of neutral system (1.35). The spectrum of
infinitesimal generator # corresponding to the neutral autonomous system

ax(t) L[ dxe-n)] .
T—E[Hi7}+£dA(f)x(t—f) (1.61)
is also defined by (1.57) where
N T
AA) = /{1 —> " H; exp(~An; )} - j exp(—A7)dA(7) (1.62)
i=l1 0

The spectrum of 7°(f) and the spectral radius of 7°(1) are defined in the same way as for the

retarded system. Let us define the essential spectrum radius r.(7 (1)) of 7°(f). The essential
spectrum radius is defined as

r(rQ)) = maxﬂ7/|e C:ye O'e(f(l))}: sup{exp(Re(A)), detAy(4) =0)} (1.63)
where

N
Ag(A) =1-) H, exp(-Ar;) (1.64)

i=1

The solutions of (1.64), i.e., eigenvalues of the difference equation



N
x(t) =Y Hx(t-1;) (1.65)

i=1
play the fundamental role in the asymptotic behaviour of the neutral system (1.61). If
r,(T’(1)) <1, there are only finitely many independent unstable solutions. On the other hand

r,(I'(1))>1 implies that there are infinitely many independent unstable solutions.

Analogously to the differential equations with delays, a semigroup of bounded linear
operators can be associated with the difference equation (1.65)

N
‘p ={¢ eC, ¢0)= ZH,-¢(—77,-)} (1.66)
i=1
where ( is the closed subspace of  The translation along the solution of (1.65)
Tp(O@=x, (1.67)

defines a strongly continuous semigroup. If the operator is considered Z=0, then
ro( T (1)) = r.(Ip(1)). If r.(1p(1))=1, the difference equation is not exponentially stable and if
r«(‘Ip(1))=1 there are infinitely many unstable solutions. Let us introduce

N
Yo = max{ra(Zexp(jﬁk H, )16, €[0,27], k=12,...,N} (1.68)
k=1
If the components of 7= (71, 7, .... ,ny) in the difference operator are rationally independent,

then 7p(f) is exponentially stable if and only if 9 <1. As can be seen, the condition is
independent of 7. Thus, the condition is equivalent to (1.56), which has been defined for the

scalar case for which y, =3 kN=1|ak

(1.65). For further details, definitions and proofs see (Hale and Verduyn Lunel, 1993,
Theorem 9.6.1) or (Hale and Verduyn Lunel, 2002). As will be shown later, the concept of
the strong stability is particularly important in stabilizing neutral systems by means of the
functional feedback from derivations of the state variables, (Hale and Verduyn Lunel, 2002),
(Salamon, 1984). The feedback should not only to assess the new spectrum into the stable
region, but it should also preserve the stability with respect to the changes in the delays 7; .

, and it defines the strong stability for difference equation

1.2.6 Analyzing the spectrum of poles of TDS - analytic methods

As has already been mentioned, the position of the system poles with respect to the
imaginary axis is decisive from the system stability point of view. Moreover, the positions of
the system poles do not only determine the stability of the system, but also the modes of the
system dynamics. It has been shown in section 1.1.4 that it is not trivial to find the solutions
of algebraic characteristic equation corresponding to system (1.1). The poles and zeros of
(1.1) can be computed analytically only for low order systems. As a matter of course, it is
much more complicated to analyse the features (upper real bound, asymptotic behaviour, etc.)
of the quasipolynomial spectrum analytically. Such an analysis can only be done for
characteristic functions of a specific form. To compute the roots of transcendental equation
using elementary analytic operations and functions is not probably possible at all.



As the example of the analysis of TDS spectrum, let us start with the analysis of the first
order system with single delay, whose characteristic function is

M(s)=s+exp(—s7) (1.69)

Regarding s = f + jw, equation (1.69) can be split into real and imaginary parts and the set of
equations for computing the system poles is

B+ exp(—,b’f)c?s(wf) =0 (1.70)
@ —exp(—p7r)sin(wr) =0

Eliminating the trigonometric terms leads to |s|2 =exp(—27) which implies that for

sufficiently large Isl, £ is negative, i.e., the poles are in the left half-plane. Eliminating the
exponential terms leads to tan(ewr)=—-w/ [, thus the spacing of the imaginary parts of the

poles with the large imaginary parts are approximately 27/7. It is also easy to show that the
poles cross the imaginary axis (8=0, cos(@7)=0, sin(@7)=a@ which yields w= * 1, cos(7)=0,
sin(7)=1) for the values of 7=7x/2+27k, k =1,2,.... Differentiating equation (1.69) implies
s=In(7)/7. Evaluating equation (1.69) for this value of s result in the value of delay 7= exp(-
1) for which the double real pole s;,= exp(l) is present in the spectrum of the system poles.
Considering 7= 0, the system has only one pole s = -1. Because the poles move continuously
with respect to changes in the parameters (Hale, 1977), the preceding results imply that for
< exp(-1), there exist two real poles in the spectrum.

In Marshall, et al., (1992), an algorithm for the stability analysis of the system with the
characteristic function

n . l .
M(s, )= a;s' + bys' exp(=s7) (1.71)
i=0 i=0

has been introduced. The algorithm investigates the system stability with respect to value of 7.
The system poles are not directly computed, but the aim is to find the values of 7 for which
the distribution of the poles is important from the system stability point of view. The
procedure consists of three steps. The first step is to examine the stability for 7 =0. In the
second step, the case of infinitesimally small positive 7is considered, i.e., when the number of
poles increases from n to infinity. The objective of the third step is to find the positive values
of 7, at which there are system poles located on the imaginary axis. The algorithm and its
extension for the case of characteristic function with more than one delay, which are
commensurate in 7, can be found in Marshall, et al., (1992). Another algorithm for analysing
the character of the pole-spectrum of the system with characteristic function (1.71) can be
found in El'sgol'c and Norkin, (1971), presented also in Gérecki, et al, (1989). For analogous
algorithm providing the analysis of the asymptotic behaviour of the spectrum of poles
corresponding to a system with more than one delay see Bellman and Cooke (1963).

As can be seen, to analyse the spectra of poles and zeros of the system with time
delays analytically is rather tedious. There exist algorithms that perform the analysis, but the
algorithms can usually be applied only to a narrow class of systems with only one or few
lumped delays. Therefore, as in the case of higher order systems (1.1), the numerical-based
method has to be used for computing the poles of time delay systems.



1.2.7 Computing the spectrum of poles of retarded system - numerical methods

As has been mentioned in section 1.1.4, high order polynomials are likely to be ill
conditioned. Therefore, from the numerical point of view, it is rather inconvenient to compute
the system poles from the characteristic polynomial, which is extracted from the system
matrix A. It is more convenient to compute the poles directly as the eigenvalues of the matrix
A. Analogously, in case of TDS, it is also convenient to avoid extracting the characteristic
function, particularly, if the system is of a higher order. (It should be noted that higher order
models result rarely if the delays are used in the modelling. Considering the characteristic
matrix A(A), given by (1.58), the solutions of characteristic equation (1.41) correspond to the
solutions of the following set of equations

A(A)v=0

(1.72)
clv-1=0

where v is the eigenvector of matrix A(s), normalised so that clv = 1, where ¢ is a constant

vector. Note that vector ¢ should not be orthogonal to v, ie., ¢-v=Ycv; #0, see
Engelborghs and Roose (1999) and Moore and Spence, (1980).

Let us briefly explain the basic features of the available methods for computing the
approximate positions of the rightmost poles of the retarded systems. A lot of work in this
particular field has been done by Engelborghs and Roose and also by Ford and Wulf. In their
common research field dealing with the extension of the bifurcation analysis to the class of
delay differential equations, they have introduced two different approaches for computing the
approximate positions of the right-most system poles (Engelborghs and Roose, 1999, 2002),
(Engelborghs, Luzyanina and Roose, 2000), (Ford and Wulf, 1998), (Wulf and Ford, 2000).
In the mentioned papers, the system being analysed consists of a set of nonlinear delay
differential equations. The system with single delay is considered in the mentioned papers of
Ford and Wulf, while in those of Engelborghs and Roose a following system with multiple
fixed lumped delays is considered

ax(t
dg ) = f(x(),X(t = 77)seeec, X(t — Ty ), X) (1.73)
where xeR”, f: R"™DxR", aeR, 7>0, i=1.Nand 0< 7| < 7, <.....< Ty_; < Ty . Steady state
solution x*e R" (equilibrium) of (1.73), given as the solution of f(x*,x*,.....,x* ) =0, does
not depend on the delays. In order to analyse the stability of (1.73) around the steady state

solutions x*, the linearization of (1.73) is performed resulting in the so-called variational
equation

dx(1) <
7=A0X(t)+Zij(t—Tj) (1.74)

j=1
where, using f(xo,xl, ..... ,XN,a') =0
Aj =i ,j=0,.,N (1.75)
OX? |(x(), X¥ (1=, )y XH (=T ), 1)

The key to the stability analysis of (1.73) is the calculation of the roots of the characteristic
equation of (1.74)



det(A(4))=0 (1.76)

where the characteristic matrix is given by

N
A =T-Ag— D A exp(-4;) (1.77)
j=l

The steady state solution x* of (1.73) is asymptotically stable if all the solutions of (1.77)
have strictly negative real parts, i.e., the poles of 1.74 are located on the left half of the
complex plane. As can be seen, function f in (1.73) has a parameter ¢. Therefore a branch of
steady state solutions x*(&) can be computed as a function of the parameter using a
continuation procedure. The aim of the bifurcation analysis is to analyse the stability of (1.73)
in the vicinity of its steady state solution x*() with respect to parameter ¢, particularly to
find the bifurcation points. Bifurcation occur whenever roots of (1.76) move through the
imaginary axis as the parameter & acquires a certain value, provided that the other roots of
(1.76) have strictly negative real parts. Fold bifurcation occurs when the root is real and a
Hopf bifurcation occurs when it is a complex pair. To find out more on bifurcation analysis
see, e.g., Marsden and McCracken, (1976), Hassard, et al, (1981), Chow and Hale, (1982),
Kuznetsov (1995). Obviously, the behaviour of the rightmost poles is decisive in the
bifurcation analysis. Note that the variational equation belongs to the class of retarded
systems and has finitely many poles (roots of (1.76)) whose real parts are greater than any real
a, see section 1.2.4. Engelborghs and Roose (1999) have developed the algorithm for
computing the rightmost roots of (1.76), see also Luzyanina, et al, (1997). The outline of the
idea is as follows: Firstly, using a numerical method, the infinite dimensional continuous
system is transformed into the finite dimensional discrete system. Secondly, the finitely many
poles of the numerical approximation are computed. Finally, using the rightmost poles from
the computed set of poles as the starting values for the iterations of Newton's method applied
to (1.72), the rightmost roots of set of equation (1.76) are found.

There are two possibilities that can be used to obtain the approximate positions of the
roots by means of discretization method. The first approach is based on the discretization of
the solution operator 7 (1), whose spectrum is given according to (1.59) by o (7" (f))=exp(Ar).
If an eigenvalue z of 7°(¢) is found, the corresponding root of the characteristic equation can
be extracted using

Re(d) = %ln(|z

_ _1 Im(z) K
), Im(A) =arg(z) = 5 arctan( Re(Z)j(mod 2t) (1.78)

The unfavourable feature of (1.78) is that because of evaluating the function arctangent, the
imaginary parts of the poles result in mod(n/2¢) . If the four-quadrant inverse tangent is used,
(function atan2 in Matlab), the result is obtained in mod(zn/t), which is obviously more
favourable result. Thus the imaginary parts of the poles have to be further evaluated to obtain
the real values of the poles. The way of discretising 7 () as well as the algorithm for
computing the rightmost roots of the characteristic equation and the features of the algorithm
can be seen in Engelborghs and Roose (1999). The second approach, which has been worked
out by Ford and Wulf, (1988), see also Wulf and Ford, (2000), is based on discretization of
the infinitesimal generator /7 whose eigenvalues are identical with the roots of the
characteristic equation. The basic ideas and the features of both methods can be found in
Engelborghs, et al, (2000). In Engelborghs and Roose (2002), the stability of linear multistep
methods (LMS) in computing the approximation of the righmost system poles is investigated.



The approximation by means of LMS methods is also used in DDE-Biftool (Engelborghs
2000), (Engelborghs, et al, 2001b), the Matlab package for bifurcation analysis of delay
differential equations.

Let us outline the fundamental ideas of the methods. A general linear k-step LMS
method may be written as

q q
Y ax i =0 fifisi (1.79)

i=0 i=0

where £ is the step of the discretization (sampling period) and ¢;, §; are the coefficients of the
method, see, e.g., Hairer, et al, (1987). It is conventional to normalise (1.79) so that &, = 1.
The method can be rewritten into the form in which the k+1* sample of x is computed from
the last samples of x and f

r r
X1 = —Z Oy Xg_j+h Z:Br—ifk—i (1.80)
i=0

i=—1

where r=¢g—1. The method is explicit if 3,=0, otherwise it is implicit. The right hand side
fi = f(x;,X(t; —17),......X(t; = Ty) 1s computed using approximations X(f; —7;) obtained
from the past values of x; regarding the ratio of 7; and 4 (it 1s due to fact that the delays cannot
be expected as integer multiples of the sampling period). Therefore, it is necessary to express

the delayed variables by means of an interpolation formula using their available samples. An
easy way of approximating a delayed variable is the use of the linear approximation

x(t— Tj)’t=kh =(1- gj)xk_dj + gjxk_dj_,_]

_ 1.81)
. f(7) _ _Tj—djh (
sl

where the function int (the greatest integer function) gives the largest integer less than or

equal to 7h. Another possibility, which has been used in Engelborghs, et al, (2001) is based
on the use of more general Nordsieck interpolation, given by

v
I +eh)= Y Pie)x,,;. £€[0,]) (1.82)
j=l1
where
Y Ee—w
Pie= [] — (1.83)
w=—l,w¢jJ
thus

v
=]y = P65,
w=-1 (1.84)
Tj —d]h

. T



for more details see, e.g., Hong-Jiong and Jiao-Xun (1996), Hairer, et al, (1987).

In the mentioned papers that deals with the system discretization performed in order to
obtain the approximation of the rightmost roots, the system considered are not in the uniform
form. Therefore, let us accomplish the procedure of discretizing the retarded system step by
step, using the ideas of the authors mentioned. In order to make the method more transparent
let us use the interpolation (1.81), which usually provides sufficient interpolation if /< 7, .
Applying the interpolation to (1.74), the right-hand side is given by

N
Ji=Aox; + Z((l —GA Xi—g, +6iA X g, +1) (1.85)
j=1
Considering the mesh on the interval [0, 4(d .« +1)]
I'={0, h, 2h,......d pax 1, (d ok + DA} (1.86)
it is convenient to rewrite (1.81) into the form
H ~
fi =ZAlXi—l (1.87)
=0

where H=d.+1 and the matrices 111 corresponding to X;_jare given by the values of
matrices Ag and A; from (1.85), as follows

:&l =(1_g])A]’ l=dj

Aj=¢iA;, I=d;+1
et g j=0..N, [=0.H (1.88)
Alz(l—gj)Aj'l'gJ'_lAj_l, Tj—Tj_1<h,l=dj

othervise 111 =0,

If the Nordsieck interpolation of the delays is used, the discrete form of f; can also be
described by the expression (1.87) with the matrices A ; obtained analogously to (1.88).

1.2.8 Discretization of the solution operator

In order to find the discrete approximation of the solution operator 7°(¢), let us introduce
the discrete form of the autonomous system state. Considering the mesh on the last segment
of the system history given by (1.86) the discrete approximation of the system state at step & is
obviously given by the values of x;,;, /[=0..H, H depends on H and on the order of the
numerical method used. Putting the samples of x into a vector

T
X :[Xk’Xk_]’““’Xk—H*+l’Xk—H*] (189)
determining the system state, the state at the step k+1 is given by

xk+]=(I)xk (190)

which is the discrete form of



X, =T (h)x, (1.91)
and where ®eR¥H™H* 4o the discrete approximation of 7°(r). Therefore, the
approximations of the rightmost system poles are obtained from (1.78) by substituting t=h.

As the demonstration of the approach in discretizing the solution operator, let us use the
simplest LMS method, i.e., Euler's explicit method, for the discretization given by the formula

Xp41 =X Thfi (1.92)
Considering f; given by (1.87)

H
X1 = Xg +hZAle_l (193)
=0

and the discrete approximation of the solution operator over the step 4 is

1+hAg hA; hAs..... WAy hAy |
I 0 0 ... 0 0
®= 0 I 0 ... 0 0 (1.94)
0 0 0 ... I 0 |

Next, let us consider the general form of the second order linear numerical method

Xp+1 =Xg + (B frv1 + BoSi)

H H (1.95)
=x; +h(B Y Axp 1+ Bo Y Axpp)
1=0 1=0
for which the matrix ® acquires the following form
'PQ PQ; PQ;..... PQ,: , PQ,- ]
I 0 0o ... 0 0
o= 0 | 0o ... 0 0 (1.96)
0 0 0 ... I 0 |
where
P=(I-hBAg"
Qo =I+h(BA,+ BrAy).Q,, = h(BA,, .1+ BA,). m=1.H, (1.97)

A =0H =H

For the most frequently used first and second order numerical methods, the coefficients ) and
By are of the following values: Euler explicit - £, =0, S = 1, Euler implicit - =1, S =0,



Trapezoidal standard £;=0.5, £ =0.5 and Trapezoidal modified pi=1-x5 f=«k
Analogously, for the general form of LMS (1.80)

r r H
Xt == U X Th Y By Ay (1.98)
i=0 i=—1  1=0
The matrix & is of form (1.96) where

P=(I-hpB . 1Ag)"
r+l 3

Qu=-0_ J+hY> BA, ,.; m=0.H , (1.99)
i=0

{Kg =0,(g<00rg>H)},{ah:(),h<()},H*:H+r

The necessary condition for the successful implementation of the numerical method is the
choice of the suitable value of step 4. The value of /& determines the stability region for which
the numerical method is stable, see Engleborghs and Roose, (2002). Usually, the smaller the
value of 4 is, the numerical method is more likely to be stable. On the other hand, it should be
noted that the step 4 should not be too small. Inadequately small 4 enhances the role of
truncation errors, which influences the accuracy of the result in a negative way. Discretizing a
time delay system, the step length of % also determines the order of the resultant discretized
system. Therefore, /4 should also be chosen with respect to the values of the maximum delay.
To sum up, there are two contradictory requirements for the length of 4. Smaller /4 results in
more precise approximation of the rightmost system poles, however, on the other hand, higher
order of the resultant discrete system is obtain which can cause difficulties in computing the
eigenvalues of the matrix @. It is well known, that the stability of the implicit methods is not
so sensitive with respect to the discretization step /. Therefore, in case of TDS, it is better to
use an implicit numerical method, which allows the higher values of & to be chosen and
thereby to obtain reasonably high order of the resultant discrete system. The problem of the
choice of & is also discussed in Engelborghs and Roose (2002), where the related heuristic
criteria can be found.

Tab. 1.1 R-K method Radau II, matrix 4 from the Butcher tableau with respect
to the order of the method »

p=L(s=1) | p=3,(s=2) =5, (s=3)
[ 88-746  296-169\6 —2+346 |
S5 1 360 1800 225
a 1 12 12| ]]296+169v6 88+7J6 —2-346
301 1800 360 225
4 4 16-+/6 16+6 1
36 36 9

An alternative approach in discretizing the solution operator and the infinitesimal
generator based on the application of Runge-Kutta (R-K) methods can be found in Breda, et
al., (2001). In the mentioned paper, the method is applied to the scalar system with a single
delay. Using the ideas from the paper, let us extend the method to TDS of form (1.75). Lets us



apply s-stage R-K method, with the Butcher tableau given by 4, 6 and ¢ (Butcher, 1987),
(Hairer, et al, 1987, 1996, 1989), see Tab. 1.1, to system (1.74) with the right-hand side
approximated by (1.87) acquires the following form

H
Y& -1 @x, +h) (a®A4, )Y
) l;( ) (1.100)

k+1
Xpy1 = YEHD

where YD = [Y(k+l), ...... ,Y5(k+1)]T, Y**D e R™ s the stage vector at the step (k+1) and
1

1, =[11,..... ,I]T € R’and the symbol ® denotes the Kronecker product, called also matrix
direct product, (Schafer, 1996). Combining equations (1.100) results in

H
Y& — (1, - hae AO)"I((ES DY +1Y (2@ &, Y+ (1.101)
=1
where I,eR™ and IeR" are identity matrices and E,=][0,,...,0.1.],
0, =[0,0.......0]' € R® E, e R”. In order to obtain the matrix @, i.c., the approximation of
the solution operator 7°(h), let us rewrite (1.101) into the formula analogous to (1.90)
X, = ®X, (1.102)

with the vector

y®

X, = : |eRr™H (1.103)
Y(k+1—H)

representing the state of the numerical approximation of TDS, where the matrix

®c R ¢ formally of the same form as (1.96), i.e.

PQ, PQ; PQ,.... PQ,  PQ, ]
I, 0 0 ... 0 0
®= 0 I, 0 ... 0 0 (1.104)
1 0 0 0 ... I, 0

where
P=(I,-hA®A.)"!
Q,=E,®I+1(2©3],)Q, =h(a®X,), m=2.H, (1.105)
H' =nsH



As can be seen, the size of ® is not only given by the order of the original system and the
number of delays plus possibly few steps corresponding to the numerical method. The size of
the discrete approximation of the solution operator is given by the stage s of the numerical
R-K method which is applied. In Breda, et al, (2001), the method Radau ITA, which belongs
to the class of stiffly accurate R-K methods (Hairer, et al, 1996) is used. The implementation
of R-K methods and particularly of the progressive method Radau IIA to a class of delay
differential equations has been studied by Zenaro, (1986), Weiner and Strehmel, (1988), Hout,
(1992) or Guglielmi, et al, (2001). Depending on the order of the method p, the matrix is
given according to Table 1.1. Let us note that the method is equivalent to the implicit Euler
method for p=1. As in the application of a LMS method, computing the right-most
eigenvalues of the numerical approximation of the solution operator @, the rightmost
eigenvalues of original continuous time delay system (1.74) are obtained from (1.78) by
substituting t=h.

1.2.9 Discretization of the infinitesimal generator of the semigroup

The second method for computing the approximations of the rightmost poles of a time
delay system is based on the discretization of the infinitesimal generator of the semigroup 7,
defined by (1.32). Considering equation (1.34), multiplying the generator /7 by the actual
system state x;, the derivation of the system state x; is obtained. Analogously to the discrete
form of the solution operator, also the discrete form of the generator 4, can be found.

Considering the discrete approximation of the system state (1.89), the discrete form of
equation (1.34) acquires the following form

ixk :J‘thk, k>0,

dt (1.106)

X0 =@y, @) = [¢(0) P(=h),....p((H" —1)h),¢(H*h)]T
In Ford and Wulf, (1988), see also Wulf and Ford, (2000), two possible methods for
discretizing the generator # of a system with a single delay has been introduced. Let us
extend the approach to system (1.74) whose right hand side is considered in discrete form

(1.87). With respect to the definition of generator (1.32), using the Euler explicit
approximation scheme

@(kh) = ¢((k —1)h) + he' ((k —1)h) (1.107)

the following equations hold

H
#'(0) =Y Ap(-ih)
=0 (1.108)

¢ (~lh) = %[¢(—(l ~Dh)y—@(-In)], I=1.H

which determine the form of the discrete approximation of



WAy hA; hAs..... WAy WA |
A 0 0
Ay =— I -I ..
h=7 0 0 0
0 0 o0 .. | R

(1.109)

The rightmost eigenvalues of 4, are directly the approximations of the rightmost system
poles. Comparing the discrete form of the infinitesimal generator #, (1.109) with the discrete
approximation of the solution operator ® (1.94), it can be seen, that the following condition

holds

1
f[h :Z(Q_IH)

(1.110)

where Iye R#*DHD - QOpviously, it is in accordance with (1.30). If the Trapezoidal rule is

applied

@(kh) = ¢((k —1)h) + h[0.5¢"(kh) + 0.5¢'((k —1)h)]

the equations analogous to (1.109) are of the form

H
#0) = Ap(-lh)

=0

# (1) = 2L~ = D)= ) - ¢ (1= D), 1=1..

(1.111)

(1.112)

To obtain the numerical approximation of the generator ., let us introduce the matrix

| 0.5hA, 0.5hA; 0.5KA,
1 -1 0
== I -1
A
0 0 0

0.5hA;_, 0.5hA |

0 0
0 0
I . |

The rows of /4, are then given by the following recursive rule

Ay =0
Ay =0, = Ay 1=1.H

(1.113)

(1.114)

where ﬂhl and @y, are the [ rows of the matrices #, and ©, respectively. In Ford and Wulf,

(1988), the approach is directly based on the first and second order approximations of the
derivation operator. If the first order approximation is used, the result is equivalent to (1.109).
Using a quadratic approximation of the derivative, e.g. second order approximation, the
discrete form of the infinitesimal generator acquires the form



2hA, 2hA, 2hA, 2hA; ... 2hA 5 2hA  2hAy
I 0 -I 0 ... 0 0 0
1| 0 I 0 -I ... 0 0 0
A, =— 1.115
PR e (L1
0 0 0 0 ... 0 =
0 0 0 0 ... - A -3 |

The similar approaches in discretising the generator # can also be found in Bellen and Maset,
(2000), where instead of the approximation ¢'(kh)={[¢((k+1)h)—@((k—1h)]/(2h) the
approximation @'(kh) =[—@((k +2)h) + 4¢((k +1)h) —3¢(k)h)]/(2h) is used.

In Breda, et al, (2001), the results of the discretization of the generator A of the
semigroup associated with the scalar system with a single delay by means of the numerical
method Runge-Kutta Radau ITA can be found. Analogously to the first and the second order
approximation, considering the scheme of a R-K method Radau IIA, let the approximation of
the derivation function segment @ of the initial conditions be defined in the following form

H
#(0)=> (A;p(-lh))
=0 (1.116)

F’(~lh) :% A ® @, ®p(—(-)h)—F (~lh)), [=1..H

where #/ is the matrix determining the R-K method Radau IIA, see Table 1.1, and
F@)=[F\),....F; (t)]T, F (1) = ¢(t). The approximation of the functions Fi(t), i=1.s—1,
can be obtained by means of applying the particular R-K scheme to the known function

segment @. Considering equations (1.116), the discrete approximation of the generator yields
the following form

1.117)

where o7, € RESHDXUHD xs (X, 7], A§e R™™, 1=0..H-1, Z=[0,0,,.0,],

Z e R 0, =[0,0,....,01",0, € R*, AS; =A, n is the order of the system, s is the
order of the stage of R-K method and

w W0 ... 0
0 Ww.. 0 =(q’!
g =t O W W W= 191 (1.118)
/X O . e eeeees W:ﬂ ®I
0 0 ... w W

?, € RAXUHsH) e RN W e R™™ and the matrix w is aligned with the s" part of the
matrix W, i.e. with its columns within ((n-1)s+1)..ns. Using this method, particularly if s=3
and h<<Tx, considerably large matrix /4, results. On the other hand, the number of the

rightmost eigenvalues of #, which approximate the rightmost poles of the system with a high
accuracy is much larger than in case of using the first or the second order LMS method. Let us



recall again that according to the definition of the spectrum of the infinitesimal generator 7,

see section 1.2.5, the right-most eigenvalues of #, are directly the approximations of the
rightmost poles of the system.

1.2.10 Discrete approximation of TDS using Delta transform

An alternative approach to the TDS discretization approaches described above has been
worked out by Petrovd, (2001) and Zitek and Petrova, (2002) based on the delta transform,
see, Middleton and Goodwin, (1990). Zitek and Petrovd have extended the discretization
approach that provides a suitable state-space forms for higher order discrite-time models
(Comeau and Hori, (1998)) to the class of TDS. The basic idea of the approach consists in
replacing the integration operator of equation (1.74) by the /™ order discrete-time integrator
1(9) given by

bl +.. 405 +hy
51 +al_15l_l +...+a15 +ag

1(0)= (1.119)

and the right-hand side of (1.74) is substituted by (1.87) using an interpolation method. Thus,
the ¢ - model acquires the form

X(0)=1(0)f(0) (1.120)

where f(0) arises from applying the & transform to (1.87). Computing the eigenvalues of
finite order approximation (1.120), given as the solutions of the characteristic equation

M (S)=det[X-1(5)f(5)]=0 (1.121)

we can obtain the approximation of the rightmost poles of system (1.74) using the formula
analogous to (1.78) given by

Im(1+ ho)

|
Re(A) = —In(l + 16 mi+ho)
e(A) =7 In(lL+ Re(1+ 15)

1 V.4
), Im(A) =arg(1+ho) = Zarctan( j(mod %) (1.122)

considering the mutual relationship of the Laplace operator s and the operator of § transform
0 in the form exp(sh) =1+ hd . Note that if four-quadrant inverse tangent is used in (1.122)

(function atan2 in Matlab), the result is obtained in mod(z/¢). As can be seen, this method
used for approximating the rightmost poles of TDS is quite similar to the method based on
discretization of the solution operator described above. In the implementations, it is
convenient to use the discrete-time integrator I(0) corresponding to a discretization
numerical method, e.g., LMS or Runge-Kutta method and so on, see Zitek and
Petrov4, (2002). The main merit of using the described method of computing the
approximation of the system rightmost poles is given by the convergence of 6 — s as h — 0,
because

exp(sh)—1 —

lim 6 = lim (1.123)

h—0 h—0 h

which provides a bi-directional bridge between the continuous and discretized model of TDS.
Thus, if only the rough approximation of the rightmost poles is sufficient, the roots of (1.121)



may be considered directly as the approximations of the rightmost poles of TDS (provided
that 4 is sufficiently small)

1.2.11 Numerical computation of the eigenvalues of large sparse matrices

The aim of both methods for computing the approximate positions of the rightmost
poles of the retarded systems is to obtain as much precise approximations of the poles as
possible. To achieve such an enhanced accuracy of the computed poles, discretization step h
should be chosen sufficiently small. As regards the mutual relationship between the system
delays and the step 4, the following conditions should be satisfied h<< T, and at least
h< 7min. Consequently, the choice of a small step / results in the considerably large matrices ®
or #,. This fact of dealing with the matrices of possibly very large sizes should be taken into
consideration and the appropriate method for computing the eigenvalues of the matrices
should be chosen. In Engelborghs, et al, (2000) the numerical methods like Subspace iteration
and Arnoldi's method, if necessary combined with the shift-invert and Caley transformation,
are suggested to use in order to compute the rightmost eigenvalues of the large sparse
matrices, see also Saad, (1992), Meerbergen and Roose, (1996). For a comprehensive
practical guide for the methods of computing the system eigenvalues, where the theory
overview as well as the final code-written algorithms can be found, see Bai, et al, (2000).
According to the decision tree for choosing the most suitable method for the solution of the
particular eigenvalue problem, which is available in the mentioned book, the problem being
solved can be characterised as the standart non-Hermitian eigenvalue problem of a sparse
matrix of a modest order (order<1000), where only a set of right-most poles is of the main
interest. For this type of problem, the decision tree does not exclude using QR method, which
belongs to the class of direct methods and is commonly used in practice. It is well known, that

for any non-Hermitian matrix A, there exists a unitary matrix U, viu= I, that transforms the

matrix to upper triangular form T = UT AU. The matrix T is called the Schur form of A and
the eigenvalues of A appear along the diagonal of T. The Schur matrix T can be obtained by
using the QR iteration method. However, if QR method is applied directly, the convergence of
the iterations is extremely slow. Therefore, before starting the iteration it is convenient to
reduce the matrix A to the upper Hessenberg form, which can be done in a finite number of
steps, and then to apply the QR iteration. For more details see, e.g., Wilkinson, (1965) or
Demmel, (1997). The possibility to apply this method is especially convenient from the
practical point of view because the QR algorithm is available in the package LAPACK, see
Anderson, et al, (1999), whose subroutines are accessible from the commonly used software
Matlab via the command eig. On the other hand, it should be noted that the computational
costs increase rapidly with the size of the matrix, (in the range proportional to the order
cubed). Also the memory requirements increase substantially with the increasing size of the
matrix in the range proportional to the order squared. To sum up, from the practical point of
view, the method can be used for the matrices of the size up to few hundreds. For the matrices
of the size close to 1000 (practically the limit is rather 500) or larger, an advanced method
should be used to compute the eigenvalues. It should be noted that not only size of the
matrices is decisive in the process of choosing the method. It should also be taken into
account, that the matrices that result from the approximations of the operators are quite sparse
(George and Liu, 1981). Moreover, the matrices, as well as the polynomials, see the section
1.1.4, can also be ill conditioned. It means that a small perturbation in the matrix coefficients,
caused, e.g., by rounding errors, can considerably change the eigenvalue spectrum. The
eigenvalues can be perturbed by much more than the perturbation of the matrix. For example,
this ill-conditioning tends to occur when two or more eigenvalues are very close together.



Especially, it can happen if the matrix is very far from the Hermitian (the matrix A is

Hermitian if A7 = A , where A denotes the matrix whose elements are complex conjugate to
A. An important feature of the Hermitian matrices is that their spectrum only consists of the
real eigenvalues).

Besides the direct methods for solving the eigenvalue problem, there exists a class of
so-called iterative methods. These methods, which are completely iterative, are usually
suitable only for the computation of a handful of interesting eigenvalues or eigenpairs. The
advanced modern iteration methods are based on so-called subspace iteration. The
fundamentals of the subspace iteration methods are in the attempt to build a subspace that is
rich in the eigenvectors that correspond to the eigenvalues that are of our interest. Thus,
dealing with the given number of eigenvectors, the matrices are usually reduced to a more
manageable form. The Arnoldi methods, which have been already mentioned, belong to the
class of subspace iteration methods. From the other methods, let us mention the Lanczos and
Jacobi-Davidson methods. The Arnoldi and Lanczos methods are particularly effective if

applied with the shift-and-invert transformation Tgy :(A—/iI)_l, where A is the shift or

pole (user-defined close to the desired eigenvalue), e.g., the methods work formally with Tg;
instead of A. Another possibility consists in the use of the Cayley transform

Tgr =(A - /iI)_l(A — A1), where A is the pole and 4 is the zero. Usually both transforms

can be performed directly, but if it is not possible, so-called inexact iterative methods has to
be used. The mentioned transformations belong to the preconditioned techniques, the aim of
which is to accelerate the convergence of the particular iterative method. Since the matrices
resulted from the discretization of the solution operator and infinitesimal generator are
relatively sparse, the efficiency of the particular iterative method can also be improved by the
use of the efficient storage scheme, see Eijkhout, (1992).

To conclude, let us mention some of the software tools or subroutines available to solve
the eigenvalue problem of large sparse matrices. Let start with the routines EB12 (multivector
iteration, (Duff and Reid, 1993)) and EB13 (Arnoldi algorithm, (Scott, 1995)) for subspace,
which are parts of the Harwell Subroutine Library (Fortran 77). Given a real unsymmetric
matrix, this routine computes the set of eigenvalues that have the largest positive real part, the
largest (in magnitudes) negative real part, or the largest magnitudes. The another collection of
the Fortran subroutines for the implicitly restarted Arnoldi method is available in the package
ARPACK, (Lehoucq, 1998). The algorithm based on Jacobi-Davidson method is available as
the Matlab function JDQR, which can be used to comput a few selected eigenvalues with
some desirable property, besides others, also the rightmost eigenvalues, see Fokkema, et al,
(1998) and also Sleijpen and Vorst, (1996). The algorithm is effective especially if the matrix
is sparse and of large size. From the algorithms providing preconditioning technique let us
mention LOBPCG (Matlab, (Knyazev, 2001)).



1.3 State feedback control of TDS
1.3.1 Overview of methods used in control of TDS

In case of TDS, the control design has the specific features and requirements which
have to be taken into consideration. For example, if the classical PID feedback control is
applied to a single input and single output (SISO) system with a large input delay (dead time),
the controller gains should be set considerably low, according to the length of the controller
action time lag. Rather slow control system responses result from such a mild setting of the
controller parameters. The idea of avoiding the influence of the time lag in the controller
action has been introduced by Smith, (1959). The idea is based on a special control loop
arrangement known as Smith predictor or Smith dead time compensator that provides the
compensation of the input time delay. However, the necessary condition for the successful
implementation of Smith predictor is to have a reliable model that truly describes the
controlled system. The delay compensation principle in Smith predictor is very sensitive to
system uncertainties, which are, however, always encountered in the practical applications.
The chances for the implementation of Smith predictor in the real plant control applications
are rather reduced. There exist many modifications of Smith predictor that are designed
especially to enhance the robustness of the control scheme, see the overview in Palmor,
(1996). A frequency domain analysis of Smith predictor can be found in Astrdm, (1977).
Extension of Smith predictor to multivariable systems can be found in Ogunnaike and Ray,
(1979).

It has been mentioned that using the classical PID control loop implies rather slow
control system dynamics. Nevertheless, from the practical point of view, the use of PID
controllers for controlling time delay system can not be ignored. A lot of the industrial
applications of control are finally based on miscellaneously assembled loops of PID
controllers. An approach of tuning the parameters of PID controllers based on the knowledge
of the model of system has been proposed by Morari and Zafiriou, (1989) and is referred to as
internal model control, see also Seborg, et al., (1989). The functional extension of the internal
model control strategy applied to TDS can be found in Zitek, (1998), Hlava, (1998), Zitek and
Hlava, (2001). Above all, the aim of this chapter is to provide a survey of methods performing
the control design in time delay systems based on pole placement. Therefore, the authors who
contributed significantly to the development of control theory of TDS will be mentioned only
briefly. Let us start with the contribution of Oguztoreli (1966) where the extension of optimal
control design to TDS can be found. The control techniques and controllers' design are the
prime topics in Marshal, (1979), Gérecki, et al., (1989), Kolmanovskii and Shaikhet, (1996).
Control analysis based on optimization of performance criteria has been studied in Malek-
Zaverei and Jamshidi, (1987), Marshal, et al., (1992). In Chukwu, (1989), stability and time
optimal control has been investigated. The control of neutral systems has been studied by
Salamon, (1984), Hale and Verduyn Lunel, (2002).

1.3.2 Finite spectrum assignment

More advanced method for eliminating the delays from the characteristic function of
TDS with the control feedback is the famous method of Finite Spectrum Assignment (FSA)
(Manitius and Olbrot, 1979). In the mentioned paper, which is considered as the keystone of
huge theory of FSA, the problem of FSA is solved for two classes of systems, systems with
delays in control and systems with commensurate delays in state variables. The systems with
delays in control are considered in the following form



ax(t)

T
— AX(1) + j dB(T)u(t — 1) (1.124)
0

for which the feedback acquires the form

T6
u(t) = Fx(t) + F[ [exp(A(z - 0))dB(@)u(r - )d (1.125)
00

in the mentioned paper of Manitius and Olbrot, (1979), it has been proved that the spectrum
of the feedback system given by (1.124) and (1.125) coincides with the spectrum of the matrix
A + B(A)F where

T
B(A) = j exp(—7A)dB(7) (1.126)
0

Assuming the controllability (stabilizability) of the pair (A, B(A)), the finite spectrum of the
feedback system, which consist of n self-conjugate points in the complex plain, can be placed
arbitrarily by a suitable choice of the matrix F.

The other problem solved in Manitius and Olbrot, (1979), i.e., FSA applied to a system
with commensurate delays in state variables, is more complicated from both the
controllability and the spectrum assignment point of view. The aim of this section is not to
provide the comprehensive theoretical background of FSA, but it is only to outline the basic
features of FSA, the method will not be explained. The method can be found in the paper of
Manitius and Olbrot, (1979) and also in the papers of Watanabe et al, (1983, 1984, 1986)
where the method was further developed and extended to the commensurate delays in both
system state and input variables. There have also been made attempts to extend the FSA to
more general time delay systems (already in paper of Manitius and Olbrot, (1979)), however
the results obtained are by no means straightforward. The problem of FSA solved in
frequency domain can be found in Ichikawa (1985) and Wang, et al., (1993).

Even though FSA method has been proved to be a tool that can perform the whole
spectrum assignment of a class of time delay systems, the method had retained only in the
theoretical stage for a long time and even simulation verification of the results had not been
done. Probably Wang and his co-workers were the first who brought forward the FSA method
into applications. In Wang et al (1995) a modification of FSA is presented to achieve
asymptotic tracking and regulation. Also the practical issues of FSA implementation are
discussed. As the application example, the modified FSA method is applied to a system
described by first order model with input time delay, which is often used for rough, but often
sufficient, description of the industrial processes. Also an identification method based on
relay feedback test is presented in the paper. Further development of the mentioned modified
FSA and the relay feedback identification can be found in monograph of Wang et al. (1999).

Even if the difficulties of the FSA method implementation are not considered, there is
another questionable issue connected with the method. A specific problem of FSA method is
the existence of feedback loops closed just from the control input itself, which may result in
neutral character of the obtained feedback system. Due to this feature, this control strategy
sometimes does not ensure enough system robustness. In Engelborghs, et al., (2001) a
problem of equivalence of the feedback system with system of neutral type was discussed and
important consequences have been derived. As has been mentioned in section 1.2.4, the
necessary condition for the stability of a neutral system is the stability of the difference part of



the system, which provides the essential spectrum. It is shown in the paper of Engelborghs
that the feedback system is unstable with respect to the arbitrarily small perturbations caused
by a practical implementation of the integral term (e.g., using a numerical rule) whenever its
difference part is unstable. This fact further reduce the number of systems for which the FSA
method results in more or less robust feedback system. To sum up the FSA is a nice theory
that provides a broad research field and which can be further studied with the results likely to
be accepted for publication in prestigious journals. However, except the contributions of
Wang, et al, and maybe few others, from the practical point view the method has not been
proved to provide valuable benefits to the field of applied control engineering.

1.3.3 Ackerman formula and its extension to TDS, concept of spectral controllability

There exist several methods to accomplish the pole assignment for delay free system (1)
by means of proportional feedback

u=-Kx(¢) (1.127)

where Ke R™. Most of the methods are based more or less on the system transformation into
a canonical form, for which the task is trivial, provided that the system is controllable.
Obviously feedback (1.127) allows the eigenvalues of the closed loop system, i.e., the
eigenvalues of the matrix A-BK, to be assigned. From the first contributions, where the
problem of pole assignment was solved, let us mention Wonham, (1967) and Davison, (1970).
Nevertheless, the method that is commonly used for the pole placement and which can be
found in most of the monographs dealing with the subject of modern control engineering is
the method introduced by Ackermann, (1972). The method known as Ackermann formula is
based on Cayley-Hamilton theorem, which states that any square matrix satisfies its own
characteristic equation. Suppose the desired characteristic function of the feedback system is
prescribed by the choice of n system poles A;

n—1 n
My(s)=det(sI-A+BK) =5+ a;s' =[[(s - &) (1.128)
i=0 i=1

The gain coefficients K performing such a pole assignment are given by the Ackermann
formula

K =[0,0,. .1]R"'M,(A) (1.129)

where

R:[B, AB, ... A”"IB] (1.130)

is the controllability matrix. The necessary condition is that the system has to be controllable,
ie., the condition rank(R)=n is satisfied, see, e.g. Ogata, (1997), Sontag, (1998). The

system is controllable if the control input u influences all the state variables and using the
control input only, an arbitrary state of the system can be achieved. If the controllability
condition is satisfied, the whole spectrum of the feedback system can be assigned by means of
the setting of the feedback gains.

The concept of controllability does not change in case of TDS. The fully consistent
concept of controllability of TDS to the delay free case requires considering the functional
character of the system state. The relevant conditions determining the system controllability



are then rather complicated, see, e.g., Gorecki, et al., (1989). However, such an exact
attainability of a functional state in a prescribed time interval is rather unsubstantial from the
practical realisation point of view. On the other hand, the condition that must be satisfied to
change the system dynamics in a desired way via a feedback is the same as in the case of
delay free system, i.e., the control input u influences all the state variables and the positions of
all the system poles. This controllability notion is known as spectral controllability and is
defined as follows. System (1.15) is spectral controllable by means of the control input u if
there exists such a feedback

T
u(z):—de(r)x(z—f) (1.131)
0

that assigns n prescribed eigenvalues to the spectrum of the feedback system

dx(t)
dr

T T T
j dA(D)X(t — T)— j dB(7) j dK@)x(t—7—6) (1.132)
0 0 0

The condition of the spectral controllability of TDS is analogous to the controllability of delay
free system, see Zitek, (1998), i.e.

rank(R(s))=n, R(s)= [B(s), A(s)B(s), ... A(s)"_lB(s)] (1.133)

for any s where R(s) is the controllability matrix of TDS. The functional feedback can be
designed by means of the extension of the Ackermann formula to TDS suggested in Zitek,
(1998) and in Zitek and Vyhlidal, (2001). The aim of the method is to accomplish cancellation
of all the delays in the characteristic function of (1.132) in order to obtain a delay free
feedback system with the dynamics determined by the prescribed n system poles 4, i.e.,

n—1 n
M .(s)=det(sI - A(s) + B(s)K(s)) = s+ Zaisi = H(s -A) (1.134)

i=0 i=1

The problem of implementation of the modified Ackermann formula

K(s):[0,0,...l]R(s)_lMd (A(s)) (1.135)

is given by obtaining a non-causal feedback as a rule. The non-causality is caused by the fact
that performing the inversion of the controllability matrix R(s), there may appear anticipative
factors exp(7;), 1 = l..n, in K(s) if the delays of TDS are lumped, or more complex
anticipative terms if some of the delays are distributed. Let us consider the system with
lumped delays only. Performing the factorisation

K(s) = [K;(5), K5(5),.....K,,(5)|diag[exp(F)),exp(% )......exp(F,)] = K(s)E(s) (1.136)

a trimmed matrix K(s) is obtained free of the predictive terms. The predictive terms in E(s)
can be cancelled out in the feedback system using a special loop arrangement analogous to
Smith compensator for MIMO systems. It has been shown in Zitek and Vyhlidal, (2001),
where such a modification of Smith compensator has been introduced, that the system
description can be transformed into the form



x(s) = [sT = A ' B(s)u(s) =[sT - A Bs)EG)T  uls) (1.137)

Performing time shifting given by the diagonal elements in E(s) across the system equation,
the system matrices A(s) and B(s) are transformed into matrices K(s) and B(s). The

functional feedback that involves the Smith compensator separately for each equation of the
system description is of the following form

u(s)=—K(s)x(s)+ K(s) [[E(s)]_l —1][s1—1§(s)]"1’§(s) u(s) (1.138)

where [E(s)]_lzdiag[exp(—sT] ),...,exp(—sTn)] is a diagonal matrix of delays and x are the

measured or estimated system state variables (for the estimation technique for TDS using a
functional model based observer see Zitek, (1998)). The second part of the right-hand side of
(1.138) represents the role of the parallel model of the plant. Obviously, if the model and the

real plant behaviour are in a perfect accordance the terms —K(s)x(s) and

= — ~ 1~ .. .
K(s)[E(s)] l[sI—A(s)r B(s)u(s) cancel each other and only the predicting term remain as
follows

u(s)=—K )sT-A ()] Blsyu(s) =R ()E(s)x(s) (1.139)

However, due to the unavoidable plant-model differences such a complete compensation for
delays is not achieved in fact. The main drawback of the extension of the Ackermann formula
to TDS is the necessity of using Smith compensator, which is known to reduce the robustness
of the feedback system. As a matter of fact, also the delays in the state variables are
compensated by feedback (1.139) and presumably the robustness of the feedback system is
also rather sensitive to the changes of the state variable delays. The robustness issue of the
feedback designed has not been systematically studied yet. The consequences of the
parameter changes, especially the changes in delays, should be investigated in order to
evaluate the applicability of the method to improve the dynamics of the real plants.

1.3.4 Pole placement based control of TDS

From the control implementation point of view, the structure of the control algorithm
plays an important role in the control design. The aim of the design is to obtain not too
complicated control law. According to that point, the mentioned algorithms, i.e. FSA and the
modification of the Ackerman formula, are not too convenient because both the method
provides the functional feedback. In contrast to the extensive theory of automatic control, the
simple control algorithms usually based on well-known PID control law can be found in most
of the industrial applications. Obviously, it is given by the fact that these algorithms are easy
to understand and implement. Supposedly, only the controllers that are based on transparent
and easily applicable control lows (comparable with the PID algorithm) have the real chance
to substitute the classical PID-based controllers in the industrial applications. Regarding the
structure of the control law, the classical state feedback control (1.127) is very convenient
from the implementation point of view. It should be noted (1.127) is used to stabilize or
improve the dynamics of a system. Nevertheless, the control, i.e., the set-point tracking and
the disturbance rejection, can also be performed using formula (1.127) provided that an
additional state variable x; is introduced to accomplish the integration of the control error



M:w(t)—yc(z) (1.140)
dt

where y. is the controlled output of the system and w is its desired value (Zitek and
Vyhlidal, 2000). Feedback (1.127) applied to this extended system performs the control with
the dynamics given by assigned poles. However, in spite of the simplicity of the control law,
the algorithm has not been successfully implemented in many industrial applications.
Unavailability of the parameter setting rules based on experiments may be one reason why the
state feedback controllers are not broadly used. The feedback parameter design is based on the
model representation of the plant. Therefore an identification of the model parameters has to
be accomplished before designing the feedback gains. Another drawback of the state feedback
control is the fact that if classical system (delay free) description (1.1) is used to describe a
real plant, the state variables are not often available as the measured system outputs. These
unmeasured or even unmeasurable state variables have to be estimated by means of state
observers, see, e.g. Ogata, et al, (1997). The whole control low that consists of the state
feedback and the observer acquires quite complicated form as a rule.

As has already been mentioned, the functional description of system (1.15) provides the
possibility to select the state variables as the available system outputs. Thus, usually, it is not
necessary to use the observers because the states are measured on the plant. Even though
some of the state variables are not available and have to be estimated, the observer can usually
be divided into independent local observers of a very simple structure. Consequently, the
application of the feedback from the state variables (1.127) becomes much easier. On the
other hand applying the coefficient feedback to TDS described by a functional model does not
allow the whole system spectrum (which is infinite) to be assigned. However, if the condition
of spectral controllability (1.133) is satisfied, n selected system poles can be assigned. The
features of the extension of classical state feedback design by the gain coefficient feedback to
the class of TDS has been studied by Zitek, (1997, 1998), Zitek and Vyhlidal, (2000, 2002b).

The idea of applying such a pole assignment consists in selecting system poles o;,i =1..n to

be assigned in order to stabilize or improve the dynamics of TDS. The gain coefficients K;,
K>, ..., K, are then computed from the set of equations

M(0;,K(,K>,...K,)=0, i=1.n (1.141)

where M (s,K) =det(sI — A(s)+ B(s)K). The poles assigned can be both real and complex
conjugate. In case of prescribing the complex conjugate pair oy, 41 = B, +jw,, the
corresponding equation has to appear in (1.141) in the following form Re[M (f;,,®),,K)]=0
and Im[M (f),,®;,,K)]=0. The key problem of the method is that only n poles (from the

infinitely many poles) can be assigned. In case of improper choice of the poles to be assigned,
some poles from the infinite set of unassigned poles can acquire the positions in the s-plane
that will bring on the unfavourable modes into the dynamics of the feedback system. In order
to obtain a satisfactory result of the assignment, the assigned poles have to be the dominant
poles of the dynamics. It is obvious that a proper analysis of the original system dynamics has
to precede the pole assignment. For example, the ultimate frequencies of the feedback system
loops provide helpful information in the process of choosing the poles to be assigned. The
frequencies, which can be obtained from experiments, are the limit frequencies of the
feedback system that should not be exceeded by the pole assignment. Nevertheless, much
more valuable information in the process of choosing the poles to be assigned is the
knowledge of the original system spectrum. Very important issue to be studied is the



evaluation of the significance of the poles in the system dynamics. Some of the results of
solving the problem of pole assignment can be found in Zitek and Vyhlidal, (2002a,b).

1.3.5 Continuous pole placement for TDS

An alternative approach for assessing the gain coefficients of feedback (1.127) has been
proposed by Michiels, et al, (2002) known as continuous pole placement for delay equations.
The method has been designed to stabilize the unstable systems with delays. The stabilization
procedure consists in step-by-step shifting of the rightmost system poles to the left with the
simultaneous monitoring of the other poles. The algorithm of the stabilization procedure is as
follows:

Algorithm 1.1 Stabilization procedure of continuous pole placement
A. Initialize /=1
B. Compute the rightmost system poles

C. Compute the sensitivity of the / rightmost poles with respect to the changes in the
feedback gain K

D. Move [ rightmost poles in direction to the left half plane by applying a small
changes to the feedback gain K, using the computed sensitivities.

E. Monitor the rightmost uncontrolled poles. If necessary, increase the number of
controlled poles [. The algorithm is stopped when stability is reached or when the
available degree of freedom in the controller does not allow sup(Re(A4)) to be further
reduced. In the other case, go to step B.

Each step of Algorithm 1.1 is described in more detail in Michiels, et al, (2002). In the paper,
the features of the method are investigated and applied to the system with single input delay.
In the end of the paper, it is shown that the method can also be used to stabilize systems with
several lumped delays in both state and input variables. There is also an example of applying
the algorithm to a system with distributed delays in the paper. Let us briefly explain the
fundamentals of the method considering a linear TDS with the characteristic
function M .(s,K) =det[sI — A(s) + B(s)K]. Let us assume that the position of /<n poles

M, A,...,4; is to be assigned in the actual step of the stabilization procedure and the
sensitivity matrix S; is defined by

_ Ixn _ d4
Sl_[Si,j]ER , Sl',j—a?lj (1142)
A coefficient S;; of the matrix S; can be computed from the following formula
-1
94 :nd(/ii,K)[nd(s,K)j (1.143)
S=/11'

In the paper of Michiels, et al, (2002), an alternative method for computing the elements of
the sensitivity matrix S; has been proposed. The method is based on the system of equations
(1.72) and provides numerically more robust computation. However, if TDS is of a low order,
which is the usual result of using delays in modelling, the use of formula (1.143) is quite safe
from the numerical point of view. If desired small displacements of the poles are given by



AA; =[AX,Ady,....A%] the change of the gain coefficients can be computed from the
linearized difference formula

S,AK = AA, (1.144)

If I<n equation (1.144) has infinitely many solutions. It is possible to choose n-I values of the
coefficients of AK in order to obtain unique solution of / coefficients of the feedback
increment. An alternative way of computing AK consist in using the generalized Moore-
Penrose pseudo-inverse Szr of S,, (Ben-Israel and Greville, 1977), (Campbell and Meyer,

1991), minimizing the square errors in satisfying (1.144)

AK =STAA, (1.145)

If the displacements of the poles given by AA; are sufficiently small, new feedback gain
matrix K, ; =K; +AK, causes the shift of the feedback system spectrum towards the
prescribed AA;, where i denotes the last step of the procedure. Nevertheless, the computed
changes in the feedback coefficients do not precisely result in the prescribed displacements in
AA; since equation (1.144) is based on linearization. On the other hand, if the displacements
in AA; are sufficiently small, the errors in the prescribed and the resultant part of the

spectrum are almost negligible. Therefore, the new spectrum of feedback system can be
obtained within few iterations of Newton's numerical method (provided that

/A\l i1 =Ny, +AA; are the starting values for the iteration) to compute the current values of

Ay =[4,2,... 41" . Together with displacements of the poles being controlled, also the

behaviour of the other rightmost poles has to be monitored in order to avoid loosing the
control of the stability determining poles. In Michiels, et al., (2002), the monitoring is
performed by DDE-BIFTOOL (Engelborghs, 2000) using an discretization based algorithm
for computing the approximation of the rightmost poles described in sections 1.2.7-9.

If the aim of the shifting the poles is to control both real and imaginary parts of the
poles, the method described above is rather cumbersome. The equivalent results can be
achieved by using the algorithm mentioned in section 1.3.4, using direct prescription of the
poles. However, the method becomes advantageous if only the real parts of the poles are to be
assigned. Such a requirement to control only the real parts of the poles is particularly useful if
the primary task of the control design is to assure the robust stability of the system, i.e., to
place the poles as much to the left as possible. Considering that

A[Re(4)] _ Re( s j (1.146)

oK oK

equation (1.145) can be rewritten into the form

AK = (Re(S, ) AAR (1.147)

where AA% the desired displacement of the real parts of the controlled poles. This approach

is particularly advantageous because it provides the possibility to control real parts of the
number of poles varying from n to 2n depending on the character of the poles. Obviously,



prescribing a shift in the real part to a complex pole results in the same shift of its complex
conjugate pole.

The procedure of stabilizing the retarded system using the continuous pole placement
method can be summarised as follows. The first step of the procedure is to compute the
rightmost poles of the system. Then, the rightmost pole is shifted to the left applying the
feedback coefficients with the increments computed from formula (1.147). Naturally, also the
positions of the uncontrolled poles are changed. Therefore, the rightmost system spectrum has
to be computed before starting the next step of the procedure. Such a stepwise shifting of the
rightmost pole is performed until the real part of another pole (or couple) appears close to the
real part of the rightmost pole. Then, instead of one pole (or couple) two poles (or couples)
are being shifted to the left. Such an procedure of increasing the number of the real parts of
the poles (couples) being controlled is performed until the group of n poles (or couples) gets
close to another pole. The further shifting of the poles to the right is not possible, because
only n real parts of poles (or couples) can be controlled. It should be noted, that from the
numerical point of view, it is necessary to keep a certain distance between the neighbouring
poles that are controlled otherwise the procedure fails, see Michiels, et al., (2002).

Unlike in case of classical system description, there exist certain limits in stabilising the
system with delays. Obviously, if the number of unstable poles is higher than the maximum
number of poles that we can control, the stabilisation by the gain feedback cannot be
performed as a rule. Such a problem can also appear if the unstable pole(s) are too far to the
right from the stability boundary. Anyway, it is very difficult to prove in advance that an
unstable system can be stabilized by the gain coefficient feedback. Stabilisability of TDS with
single input delay has been studied in Michiels and Roose, (2002b).

1.3.6 Strong stabilization of neutral systems

It has been mentioned in section 1.2.4 that the essential spectrum of (1.14), i.e., the
spectrum corresponding to the difference equation

N
x(t) =Y Hx(t-1;) (1.148)

i=l1

associated with (1.14), determines the number of unstable poles of (1.14). Let ¢ is defined by
(1.51). If ¢>0, there are infinitely many unstable poles, since the spectrum of (1.14)
converges to the spectrum of (1.148) with the increasing magnitude of the poles. On the
contrary, ¢ <0 indicates that the number of unstable system poles is finite. Therefore the
stabilization task of a neutral system differs with respect to the value of c. If ¢ >0, the neutral
system has to be stabilised in two steps. In the first step difference equation (1.148) has to be
stabilised and in the second step the stabilization of the whole system is to be performed. The
problem of stabilization of the neutral systems has been studied by Salamon, (1984), Pandolfi,
(1976) and Hale and Verduyn Lunel (2002). Let the neutral system is considered in the form

d N ok
Z{X(I) - ;H,-X(t - 77,-)} - £ dA(D)X(1 — T) + Bu(?) (1.149)

In the first step it is necessary to achieve the stability of the difference equation

N
x(t) =Y Hx(t—7;)+Bu() (1.150)

i=1



Considering the feedback

N
u(t)="> Fx(t—1;) (1.151)

i=1

yields

N N
x(t)=Y Hix(t—7)+BY Fx(t—17;) (1.152)

i=1 i=1

The characteristic matrix of (1.152) is given by

N
Ao ($)=Ag(s) =B F;exp(-s7;) (1.153)

i=1
where

N
Ao =1-) H;exp(-s7;) (1.154)

i=1

is the characteristic matrix of the difference equation associated with original system (1.149).
Difference equation (1.152) is exponentially stable if and only if the roots of the equation
D(s) =det[Ag (s)]=0 are located in the left half of the complex plane. In particular, a

necessary condition for the stabilizability of (1.149) is given by
rank[Ao(s),B]=n, Vse C,with Re(s) >-¢ (1.155)

for some & > 0. The necessity of this condition has been studied in Salamon, (1984), for
general difference equation and in O'Connor and Tarn, (1983a, 1983b) for systems with a
single point delay. The condition is analogous to the controllability condition for retarded
systems rank[sI—A(s),B(s)]: n, Vse C,with Re(s) >-£ , from which condition (1.133)
results. Considering the concept of strong stability of the neutral systems, condition (1.155) is
only necessary condition but not the sufficient due to the sensitivity of the stability properties
of difference equations with variations in the delays. Condition (1.155) is also sufficient in
case that the delays are commensurable (Salamon, 1984) and by an appropriate choice of the
control matrices Fi, F», ..., Fy, the decay rate of system (1.152) can be made arbitrarily fast. If
the delays 7, are rationally independent, the problem is more complicated. The aim of

applying feedback (1.151) is to make the difference equation strongly stable, i.e., to make
<1, where 7y is defined by (1.68). According to Hale and Verduyn Lunel (2002), difference
equation (1.152) is strongly stable, i.e., independently on the variations in the delays, if and
only if for any choice of the delays 7,,77,,..,77y the roots of the determinant

N
det[Ag o1 (5)]= det| 1= Y (M; + BE)) exp(-s7,) (1.156)
i=1
are in the open half-plane {4 € C,Re(4)<—-£<0} for some positive & depending on the
values of 77;,7,,..,77y . Thus a necessary condition for strong stabilizability of (1.156) is that,
for any choice of the delays 7,7,,...,17y



N
rank{l - ZMi exp(—sﬂi),B} =n, Vse C,with Re(s) >-¢ (1.157)
i=1

for some positive &= &(y,7,,..,n7y). Condition (1.157) is not only sufficient but also
necessary for strong stabilizability of (1.150), for proof see Hale and Verduyn Lunel (2002).

The second step in the stabilization of (1.149) is to assure that any of the poles will not
remain in the right half of the complex plane. Performing the first step of the stabilization, i.e.,
stabilizing the difference equation associated to (1.149), there is finite number of poles
located to the right from the stability boundary. Involving the velocity feedback from the state
variables that is designed to stabilize (1.150), the feedback acquires the following form

N T
u(t) =Y Fx(t-n) - [dK(@)x(t - 7) (1.158)
i=1 0
The feedback system is then given by
d N T T
lx(0) =Y (H; +BE)x(-7) | = [dA@)x( - 7) - B [dK(D)x(t—7) (1.159)
dt P 0 0
with the characteristic matrix

T
Aqi(5)= 580,01 (5) — [exp(—=s T)d[A() - BK ()] (1.160)
0

System (1.149) is exponentially stable if and only if the roots of the characteristic equation
M (s)=det[A;(s)]=0 are located in the left half of the complex plane. In particular, a
necessary condition for stabilizability is given by (1.157) and

rank[A(s),B]=n, Vse C,with Re(s) > -¢ (1.161)

for some & > 0. where

N T
A(s) = {I - ZM,- exp(—s7j; )} - Jexp(—s 7)dA(T) (1.162)
i=1 0

The necessity of these conditions and the fact that these conditions (1.157) and (1.161) are
independent has been claimed in Salamon, (1984).

Let us suppose that the matrices F;, F,, ..., Fx are chosen such that difference equation
(1.152) is exponentially stable and independent of the delays. This implies that the feedback
system has a finite number of unstable poles that should be shifted to stabilize the feedback
system. To sum up, condition (1.157) is necessary and sufficient for strong stabilization of the
difference equation of closed loop neutral equation (1.159) and the second condition is
necessary and sufficient to stabilize the remaining finitely many unstable modes. Since the
retarded part of (1.159) is robust with variations in the delays and the associate difference
equation of (1.159) is strongly stable, it follows that the stability properties of the closed-loop
system (1.159) are robust with small variations in the delays.



2. OBJECTIVES OF THE THESIS

The main topics of this thesis are the frequency domain based analysis and control of
time delay systems. Particularly, the stress will be laid on the methods of synthesis and
control design based on the knowledge of the dominant part of the spectrum of the system
poles and zeros. As has been mentioned in chapter 1, the applicability of the available
algorithms is often restricted on a narrow class of systems. For example, the method for
computing the approximation of the rightmost poles using either the discretization of the
infinitesimal generator of the semigroup or the discretization of the solution operator
(described in sections 1.2.7-1.2.9) can be applied only to the retarded systems, preferably only
with the lumped delays. The distribution of the poles in the complex plane determines the
stability and the modes of the dynamics. However, the distribution as such is not decisive in
determining the significance of the modes of the dynamics. The significance of the modes is
determined by the distribution of the system zeros. Thus, not only the distribution of the
system poles but also the distribution of the system zeros should be known to evaluate
completely the system dynamics.

® Objective 1. The primary objective of this thesis is to develop an algorithm for computing
both the system poles and zeros of TDS located in a chosen region of the complex plane.
The algorithm should provide the possibility to solve the task for large class of systems,
both retarded and neutral. Considering that both the system poles and zeros are the
solutions of the quasipolynomial equations, the algorithm is to be based on computing the
roots of quasipolynomials. Since the quasipolynomials (as well as polynomials) tend to be
ill conditioned as its degree increases, the robustness of the algorithm is to be investigated.
The result of the investigation should be the definition of the class of TDS for which the
algorithm may be successfully used. This objective of the thesis will be the most
important one. The other objectives are chosen in order to verify the features of the
algorithm that will be designed.

e Objective 2. The modeling approach involving the delays allows the real plants to be
described by considerably lower order models (if the order is considered as the number of
differential equations) than if a modeling approach based on the delay free models is used.
Thus, the second objective of this thesis is the investigation of the features of the low
order models as the basic element units in building the plant model. The investigation
should result in the mapping of the distribution of the poles and zeros of the low order
TDS. The other result of this part of the thesis should be the choice of the suitable
structure of the low order model able to fit the dynamics of a wide class of the SISO
systems.

® Objective 3. The third objective is motivated by the fact that the evaluation of the
significance of the poles in the infinite spectra based on evaluating the distances of the
poles from the stability boundary is sufficient only if the stability of the system is
evaluated. If the character of the system input-output dynamics is to be evaluated, the
criterion is insufficient. Also the other criterion used to evaluate the significance of the
system poles based on the magnitudes of the poles does not provide satisfactory
evaluation of the pole significance. Thus, the third objective of this thesis is to define a
group of system poles (from the infinite spectrum) that determine the system input-output
dynamics. Therefore, I am going to try and find a criterion that will truly evaluate the
significance of the system poles.



® Objective 4. In section 1.3 I have explained some of the methods for control design of
TDS. As the last topic of the thesis, the methods based on the pole placement using the
proportional feedback from the state variables are to be investigated. The stress should to
be laid on comparing the method based on the direct prescription of the poles with the
method known as continuous pole placement. Both the control feedback design methods
are also to be extended to the class of neutral systems. As the result of this part of the
thesis, the suitable strategy for pole placement applied to TDS is to be proposed.

In order to summarize the contributions that will be achieved in this thesis and to
demonstrate the applicability of the methods that will be developed, the methods are to be
applied for analyzing the dynamics of a real (laboratory) plant. The control methods based on
the continuous and the direct pole placement are to be applied to control the plant as well.



3. ALGORITHMS FOR COMPUTING QUASIPOLYNOMIAL ROOTS

3.1 Introduction

According to the first objective of this thesis stated in chapter 2, in this chapter, I am
going to introduce and explain two algorithms for computing the roots of quasipolynomials
that I have developed. The first algorithm is based on the modification of Weyl's algorithm
(Pan, 1997), which is one of the basic algorithms for locating the roots of polynomials. The
modification of the algorithm consist in the use of the argument principle based test instead of
the proximity test, which is used in the original algorithm. This modification allows Weyl's
algorithm to be used also for computing the roots of quasipolynomials. The second algorithm
for computing the quasipolynomial roots that I am going to introduce in this chapter, which is
original in fact and more powerful than Weyl's construction based algorithm, is based on
mapping the quasipolynomial function in the complex plane. Also the features of the
algorithms will be studied and several application examples will be included.

3.2 Argument principle based algorithm

Let us consider a quasipolynomial characteristic function of TDS in the following form

M(s)= s'Q;(s) (3.1)

i=0

where Q;(s), i=1..n are the functions involving the terms corresponding to the distribution of

the system delays. It has been mentioned that it is not an easy task to compute the roots of the
polynomials, especially if its order is higher than four. Naturally, the issue is even more
difficult if the roots of a quasipolynomial are to be computed.

Some of the powerful algorithms for computing the roots of polynomials use the
iteration methods based on iterative computing the eigenvalues of a companion matrix of the
polynomial. The task of computing the polynomial roots is changed into the task of
computing the eigenvalues of the accompanying matrix, see, e.g., Fortune, (2001). Since the
companion matrix of quasipolynomial (3.1) is a functional matrix, such an approach is not
suitable for computing the roots of quasipolynomials. Weyl's geometric construction based
algorithm is the alternative way of computing the polynomial roots, see, e.g., Wilf, (1978) or
Pan, (1997) and the references therein. (In fact, it is one of the first advanced numerical
algorithms used for computing the roots of polynomials). Weyl's construction, also known as
quadtree construction, is a two-dimensional version of the bisection algorithm of a line
interval, see Fig. 3.1. The basic idea of the construction is the following. On the
complex plane, the search for the roots starts with an initial suspect region
D =[LBiins Pmax 1X[@in » Pmax ] » containing all the polynomial roots. Then the region is

partitioned into four congruent subregions. At the centre of each of them, the proximity test is
performed (Henrici, 1974), i.e., a distance of the closest root from the centre is estimated. If
this distance exceeds the length of the diagonal of the subregion then the subregion does not
contain any roots and is discarded. If the result is opposite, the subregion is called suspect and
undergoes the same recursive process of partitioning into four subregions. Then the proximity
tests are performed at the centres of those smaller subregions. The polynomial roots lying in
each suspect region are approximated by its centre with errors bounded by the half-length of
its diagonal. Thus, in k iteration steps, the approximation errors cannot exceed 0.5diag( 2)/2",

where D represents the actual suspect region.
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Fig. 3.1 Locating the roots by Weyl's (quadtree) algorithm
asterisks - polynomial roots, dots - approximation of the polynomial roots

Let us modify the algorithm in order to compute the roots of a quasipolynomial M (s)
located inside the suspect region b, Instead of the proximity test let us use the argument
principle, which holds for any analytic function including quasipolynomials, (El'sgol'ts and
Norkin, 1973), and by means of which it is possible to compute the number of roots in a
region. Let 2bis a domain in the complex plane whose boundary ¢ is a closed, Jordan curve,

i.e., it is of the finite length and has no multiple points. Let G(s)eC is a meromorphic
function, i.e., a single valued analytic function that has no singular points beside poles. Then

LG9 gy Ny — Py (32)
279 G(s)
@
and
iA(,, argG(s) = N — Poy (3.3)
2

where N+ is the total number of zeros of the function G in 25, Py is the total number of
poles of the function G in 5, both counting their multiplicities and G'(s)=dG(s)/ds .

The principle of argument is based on the relation between the increments of the
logarithm and the argument of a function G along a function ¢:[a,b] —> C, i.e.,

A(p argG(s) = Im[A(plnG(s)] (3.4)
where

G,

Go) s (3.5)

G(o(b))
A, InG(s) =In——=
PN G(s) |G<¢<a>>

+jAgargG(s) = |
4

If the function ¢ is closed, then



ApargG(s) =k 27 and A,InG(s) =k 27 3.6)
where k; and k; are integers and since @(a) = @(b)
ApInG(s) = jA, argG(s) 3.7

Obviously, if formulas (3.2) or (3.3) are applied to a A

quasipolynomial M(s), the result is the number of M(s) ja@,,, S <& C
zeros in D. Although the number of M(s) zeros in b can
be computed from (3.2), such an approach is only
suitable for low order quasipolynomials with not too (p4‘ A

complicated exponential terms Q; in (3.1). From the "
numerical point of view, it should not be a problem to

perform the integration in (3.2) using a method based on %
a trapezoidal or quadrature summation rule. However, ; 5
such a numerical evaluation of the integral of M’/M is Bmin 5 >
rather computationally and memory demanding. It may mv
result in an unacceptably long computational time if the Fig. 3.2 Region )in s-plane
term M’/M is too complicated. The advantage of such

a numerical computation of (3.2) is that the result is directly the number of the roots and no
algorithm for graphical evaluation of the argument is to be performed as in case of using
formula (3.3).

Consider the region D =[Lin>Pmax 1X[@min»@Pmax ] - The region is enclosed by four

Min freeemrsmmsenen

A} @ B

line-segments, see Fig. 3.2

ﬂ(ﬂ) = :B+jwmin
0 () = :Bmax +jo Be [:Bminaﬂmax]

. (3.8)
¢3(:B) = _IB + :Bmin +:Bmax + ] Wmax > we [a)minaa)max]
(04(60) = :Bmax + -0+ WOmax + wmin)
The number of M(s) roots inside the region b is given by the formula
|2 amgy 1 M (@)
Ngy=—— I ? dp+ I #2
27 e g My (B) o do  M(py(®))
min min (39)

ﬁ max a)max

AL CA102) R S aM (g4 (@) 1
+ﬁj. g M(p3(p)) ﬂ+wj. do  M(@4(o))

The alternative way of computing the number of M(s) roots in b is based on a graphical
evaluation of formula (3.3) which allows N<g to be evaluated from the variation of the
argument P(s) =arg(M (s))

Im(M (s))

tan(P(s)) = Re(M ()

(3.10)

as s moves once around the boundary of 2 in the counter-clockwise sense. Considering the
features of the trigonometric function arctangent, the argument & results in the form of



mod(7/2), 1e., within -7t/2 and ®/2. The number of roots N« results from the number of
times P(s) crosses the value m/2 or -n/2 as s varies around the contour ¢, see Fig 3.3,
considering the course of the function. The algorithm of evaluating the change of ®(s) as s
moves around the boundary of the region b is quite simple and easy to implement. Starting
from a certain arbitrarily chosen point on ¢, e.g., A, see Fig. 3.2, and varying s continuously
in the counter-clockwise sense, the argument changes piecewise continuously (piecewise
continuity is due to ¢, which is also piecewise continuous, see Fig. 3.2) until it reaches 7/2 (or
-1/2). Then the argument changes discontinuously to -t/2 (or 7/2) and it changes piecewise
continuously again until it reaches one of the boundary values +7/2. In this way the argument
is evaluated around ¢, passing the points B, C and D and coming back to the starting point A,
see Fig. 3.2. A set of curves starting and ending at +7/2 is obtained as the result of the
argument evaluation providing the argument change &, - or 0, see Fig. 3.3. In order to obtain
the final A(/,Cb(s) the changes in arguments on these curves, ie., T, - or 0, have to be

summed. If a curve starts at -m/2 and ends at w/2, the contribution to A(/,Cb(s) 1S T.
Conversely, if a curve starts at /2 and ends at -7/2, the contribution to A(/,Cb(s) is -7. If the
curve starts and ends at /2 (-%/2), the contribution to A(/,Cb(s) is 0. Obviously, the final

change of the argument, whose variation along the contour ¢ is shown in Fig. 3.3, is
Ap®(s) =27 . It indicates that there is one root of M(s) in the region D., Ny =l.

/2

Fig. 3.3 Variation of &(s) along the closed contour ¢, see Fig. 3.2

The presented algorithm for computing N based on (3.3), which has also been used in
Luzyanina and Roose, (1996) to detect bifurcation points for delay differential equations, is
more suitable for computer implementation than the algorithm based on (3.2) due to its
distinctly lower number of numerical operations to be performed.

Applying the argument principle first to the region D =[L > Bmax 1X[@min > Pmax ] »
see Fig. 3.1, the number of roots of M(s) in this prime suspect region is obtained. Than
dividing the region into four subregions Hry, Drg, D and Der (TL= top-left, TR= top-
right, BL= bottom-left, BR= bottom-right), the number of M(s) roots is computed in each of
the subregions. If a subregion contains some roots, it is called suspect and it is divided into
four subregions again to which the argument based test is applied. The whole algorithm of
dividing the suspect subregions is performed recursively until the required accuracy of the
locations of the roots is achieved. The approximate position of a root is considered as the
position of the centre of the smallest suspect region, in which the root has been located.



The error of the root approximation is bounded by the half-length of the diagonal of the
smallest suspect subregion. If no root is located in a subregion, the recursive algorithm is
stopped on this part of the complex plain. It is advisable to check whether or not the number
of roots located in a region agrees with the sum of the numbers of roots located in its
subregions.

Non-satisfying this condition indicates a failure of the algorithm and may result in omitting
some roots in 5.

Although the algorithm of recursive splitting the suspect regions is quite simple, its
computer implementation requires an elaborate approach performing the recursive operations.
Obviously, in the program implementation, there should be subroutines that perform the
algorithm for dividing the suspect regions and the algorithm for locating the roots. The more
difficult problem to solve is to decide in which way the regions are to be checked and how to
assure that no piece of the prime suspect region will remain unchecked. The possible solution
of the problem is to store the information of checked subregions (i.e., whether or not the
particular subregion contains any roots and also their number) in a data structure
corresponding to a general tree (nonlinear data structure used in database systems, see, e.g.,
Trembley and Bunt, (1989), see Fig. 3.4. The root of the tree is the prime region 5. The root
has four branches, each of them corresponding to one of the subregions bry, Drg, DgL or
Ipr. If the particular subregion does not contain any roots, the corresponding branch is
marked with the stop leaf, which denotes that the partitioning of the region is not to be
performed. If there are any roots in the region, their number is written in the corresponding
branch node from which four branches grow corresponding to four parts of the partitioned
region. In this way, the algorithm is performed recursively until the regions with diagonals
less than required maximum error of the approximation result. The branches corresponding to
these smallest regions are marked either with the stop leaves or with root leaves depending on
whether or not they contain any roots. Also the number of roots in the smallest regions
(denoting the multiplicity of the final root approximations) are written in the root-leaves.

5

AN

TR/ \BL

BR TL

TL BR TL

TR & BR TR & BR BR BR
TL H- TLTR BLig TLWBL TLWBL

Fig. 3.4 Tree representing recursive process of Weyl's construction
applied to region seen in Fig. 3.1



The algorithm is performed until all the branches of the tree are marked either with the stop
leaves or with root leaves. Such a tree representing the recursive process in locating the roots
in region 2 from Fig. 3.1 is shown in Fig. 3.4 where the root leaves are marked by black

squares. Each part of the prime region can be identified using, e.g., the dot notation. For
example the root leaves of the tree in Fig. 3.4, are identified as follows (in the

left-right direction): DR BLBL> DTLTRBLBR: -PBRBLTRBR> -DBRBLBLTR and
DprBLBRTR - The application of the described rootfinding algorithm based on Weyl's

construction and the argument principle will be shown in the following Example 3.1.

Example 3.1
Let us find the roots of the quasipolynomial

M (5)=0.55> +2exp(-s) s> + 2.5exp(-2s) 5 + exp(-3s) (3.11)

located in the region D =[-1, 1]X[0, 2]. Applying Weyl's construction combined with
argument based test, the following results are obtained, see Fig.3.5 - Fig. 3.12.

/2 T T T T T T T
@
5 0
_n/z 1 1 1 1 1 1 1
0 1000 2000 3000 4000 Ns 5000 6000 7000 8000
Fig. 3.5 Variation of &(s) along the boundary of
D =[-1, 1]x[0, 2], AD(s) =67, Noy =3
/2 T T T T T T
w L _
5 0
—1/2 | 1 | 1 | 1
0 500 1000 1500 2000 NS 2500 3000 3500 4000

Fig. 3.6 Variation of &(s)along the boundary of
Dy =[-1, 01x[1, 2], AD(s) =4, Ny, =2
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Fig. 3.7 Variation of ®(s)along the boundary of Hg =[O0, 1]X[l, 2], AD(s) =27, N Drr =1
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Fig. 3.8 Variation of ®(s)along the boundary of Dy =[-1, 0]x[0, 1], A®(s) =0, Nibml =0
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Fig. 3.9 Variation of ®(s)along the boundary of Hgr =[O0, 1]x[0, 1], A®(s) =0, NiZ)BR =0
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Fig. 3.10 Variation of @(s) along the boundary of
D1 rRTLBR =[-0.375, —0.25]x[1.25, 1.375], AD(s) =4r, NP et = 2
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Fig. 3.11 Variation of &(s) along the boundary of
:Z)TR.TL.BL.TL = [O 1 25, OZS]X [l 625, 1 75] , Aq)(S) = 27'[, N:Z)TR TLBLAL =1

In order to evaluate the argument along the boundary of the region 3, i.e., along ¢
given by (3.8), consider a mesh of points on ¢ with the increment As. Thus, the argument is to
be evaluated for the points Ny ;, i =1..2(nt((Bpax — Bmin) / As) +It((@pax — Opin )/ Ag) +2)

of ¢. Let us chose As=0.001 to evaluate the argument increment of (3.11) along the
boundary of prime region 5 =[-1, 1]1x[0, 2], and its subregions. As can be seen in Fig. 3.5,

the argument increment along the boundary ¢ of Dis A,P(s) =67, i.e., Ny =3. It means,
according to (3.3) (quasipolynomial (3.11) does not have any poles, Py =0), that there are
three zeros (roots) of (3.11), in . Partitioning the region into Hry, Drr, Dgr and Dgg, it can
be seen in Fig. 3.6 -Fig. 3.9, that there are 2 roots in Dy, since Ay, P(s) =47, 1 root in Drr

since A, P(s)=27, and no roots in g, and Dgr, since Ay, P(s) =47y P(s)=0.

Consequently, in the second step, the regions Drp, Drg are partitioned into four subregions
and in each of them the argument based test is performed.
Applying this modified recursive Weyl's construction, finally, two roots are located in



‘:Z)'TL.BR.TL.BR = [—0375, - 025] X1 25,1 375]
see Fig. 3.10, and one root in
:Z)TR.TL.BL.TL = [O 125, 025] X1 .625, 1 J715]

Provided that such approximation of the roots is sufficient, the roots of quasipolynomial
(3.11) are given by

513 = (=0.3125+ j1.3125) £0.0625(1 % j)
s = (0.1875 + j1.6875) + 0.0625(1 + j)

i.e., the root approximations are located in the centres of D1 gr1.BR @d DR TLBLTL >

and the maximum approximation error is given by the half of their diagonals. The partitioning
process of the prime region with the final position of the approximations of the roots can be
seen in Fig. 3.12.
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Fig. 3.12 Weyl's construction applied to (3.11)

As can be seen, there are two roots located in the region D11 gr 11.BR - HOWever, the

character of this couple remains unknown. The roots can be either distinct or in the form of
double root. Further carrying on Weyl's algorithm could be used to solve the problem.
However, only distinctness of the roots can be confirmed after some iterations. The
multiplicity of a root cannot be proved in this way, because the result is always given with an
approximation error. On the other hand, from the practical point of view, it does not really
matter if two or several roots are multiple or distinct but located within small mutual distances
(considering the physical meaning of the roots, i.e., they represent the system poles or zeros).



3.3 Computing the root approximations using Newton's method

To sum up, the designed modification of Weyl's construction seems to be a suitable
tool to locate the approximate positions of the roots located in a part of the complex plane. On
the other hand, its convergence speed, given by the linear convergence rate, is relatively low.
It is possible to accelerate the iteration process, for example by using Newton's method. This
numerical method guarantees the quadratic convergence from a starting point of the iteration
so to a root of M(s). Let M(s) be an analytic function on a region 5, then

M(Si,k)

-— 3.12
M Gsi0) (3.12)

Sik+1 = Sik

where s; is i" root of M(s), M'(s)=dM (s)/ds, and k=0,1,..., is the step of Newton's iteration.
The accuracy of the " root approximation can be indirectly prescribed by the value &y . The
Newton's iteration stops if

EN 2 ks Eik = ’Si,k _Si,k—1’ (3.13)

Since Newton's method iterates in a quadratic rate, it can be assumed that the approximation
error is close to £y but probably not less than & .

The problem in applying Newton's method consists in the requirement that the starting
point of the iteration is to be located close to the root being approximated. The procedure of
Newton's iteration can be unstable near a horizontal tangent or a local minimum of M(s).
However, with a good choice of the initial root's position, the algorithm is likely to converge,
see, e.g., Rektorys, (1994). Using Newton's algorithm is also risky if not only one but several
poles are close to the starting point of the iterations. In such a case, depending on the
character of M(s), the method may incorrectly result in the multiple roots whereas some of the
roots are not located. To avoid such a failure, Weyl's construction should be carried out until
the sufficient distinctions of the root approximations are achieved, particularly in the
subregions with high density of the roots. If any of the roots are multiple or close to multiple
roots, it is advisable to carry out Weyl's construction in the subregion where the roots are
located until the required accuracy of the root approximations are achieved. The convergence
features of both the methods will be shown and compared in Example 3.2

Example 3.2

Let us compare the convergence features of Newton's method and Weyl's algorithm.
Let us use the algorithms for approximating root ss of M(s) given by (3.11) starting from
s50=0.5+j1.5. As can be seen in Fig. 3.13 and Fig 3.14, respectively, the convergence speed of
both the algorithms is more or less equivalent at the steps 1-4 of the iterations, in which the
approximations get very close to the roots being approximated. However, as can be seen in
Tab. 3.1, the convergence of Newton's method is much faster in the further steps than the
convergence of Weyl's construction. Obviously, employing Newton's method is reasonable if
the approximation having resulted from Weyl's algorithm gets close to the root of M(s).
Weyl's construction is much more robust in locating the prime distribution of the roots in 2D

and can not be substituted by Newton's method in this point.
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Fig. 3.13 Iterations of Newton's method Fig. 3.14 Tterations of Weyl's construction

Tab. 3.1 Comparing Newton's method and Weyl's aleorithm

€k =155,k = 55,k-1

£ Newton's method Weyl's algorithm
1 0.24924597344752 0.35355339059327
2 0.17764319986182 0.17677669529664
3 0.15220071700968 0.08838834764832
4 0.04797851095093 0.04419417382416
5 0.00760192169348 0.02209708691208
6 0.00018530326764 0.01104854345604
7 0.00000010929595 0.00552427172802
8 0.00000000000004 0.00276213586401
9 0.00000000000000 0.00138106793200
10 0.00000000000000 0.00069053396600

3.4 Rootfinding algorithm based on mapping the quasipolynomial function

It has been shown in section 3.3 that Newton's method is an effective tool for
computing the roots of quasipolynomial M(s) if the approximate positions of the roots are
known. These prime approximations can be provided by modified Weyl's construction using
argument principle based test. On one hand the construction is quite reliable, however, on the
other hand the method is rather cumbersome, especially if there are many roots in the selected
region 5. In this section I am going to introduce an original method for locating the
approximate positions of the quasipolynomial roots based on mapping the function M(s) in
s-plane.

Suppose a quasipolynomial M(s) is given by (3.1) and we want to find the
approximate positions of its real roots located on the interval & =[S > Bmax]- Real roots are
the solutions of the equation M(s)=0, seR. Thus, an intuitive way of obtaining the

approximate positions of the real roots consists in locating the intersection points of the curve
described by M(s) with the real axis s, see Fig. 3.15. In order to locate the



approximations s;o, let us consider a mesh on £ =[Bin> Bmax] given by By = Bin + kA,
k :O,l,...,int|,8maX - ,Bmm|/ Ag+1, where Ag is the chosen increment on the real axis. Real

roots of M(s) are located between the values ,Bri and ,Bri 41 for which

M(B,)M(B, 1) <0 (3.14)

The approximation of the roots are given by

M(p,)
si0 =B, + A, |As (3.15)
CMB)-M (B,
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Fig. 3.15 Locating approximate positions of the real roots of M(s)

As has been shown, it is relatively easy to obtain the approximate positions of the real
roots of M(s). The task becomes much more complicated if the complex roots are to be found.
Quasipolynomial M(s) as a function of the complex variable s = f+ j@ can be split into real
and imaginary parts

M(B+jw)=R(B,0)+jl(f,0) (3.16)

where R(fB,@) =Re{M (f+jw)} and I(B,@) =Im{M (f+j@)}. Consequently, characteristic
equation M(s)=0 can be split into

R(B,w)=0
I(f,w)=0

Analogously to the task to locate the positions of the real roots, let us look at the problem
from the geometric point of view. The complex roots of M(s) are the intersection points of the
curves described by the implicit functions R(S,@) =0 and I(5,@) = 0. Mapping the surfaces
R(f, @ and I(f3,®) on the chosen (suspect) region D =[Lin» Bmax JX[@min» @max ] the zero-level
contours are given by the intersections of the surfaces with the s-plane, see  Fig. 3.16. Since
the contours R(f,@) =0 and I(f,@) =0 can be found analytically only for most trivial
quasipolynomials, see Example 3.3., a numerical method has to be used to solve the problem.

(3.17)



Fig. 3.16 The principle of locating M(s) roots

Example 3.3
Let us find the contours R(B,w)=0 and R(B,w)=0 corresponding to the
quasipolynomial

M (s) =s+exp(—s) (3.18)
Splitting the function M(/+j®) into real and imaginary parts

R(B,w) = [ +exp(—f)cosw (3.19)
I(B,w) = w—exp(—f)sin @ (3.20)

Both equations (3.19) and (3.20) allow the explicit forms of R(f3,@) =0 and I(f,@) =0 to be
found given by

@ = (2k +1)x + arccos(Bexp(B)), € (—,B,],k=0,1,2,... (3.21)
B=-n—2—, we2kr, 2k +1)x], k=0,1,2,... (3.22)
Sin @

Let us analyse the functions in order to obtain the zero-level contours analytically. Since the
function arccosine provides real values only for its argument taken from the interval
[-1,1], the function Bexp(f) is to be limited by these values. Evaluating first and second
derivation of this function, it is easy to find its absolute minimum that is reached for f=-1,

thus min( Sexp(f)) =—0.368 > —1. Evaluating the limit ﬂlim Pexp(f)=0 and taking into

——00



consideration the fact that the function is decreasing on the interval [—eo,—1) and increasing
on the interval [—1eo) there only exists the limitation given by £ < f,. Numerical evaluation
of the equation Bexp(f)=1 results in S, =0.567144. The boundaries of @ in (3.22) are

given by the fact that the logarithm function provides the real results only for its argument
greater than 0. Since function sine gives positive result forw e [2kx, 2k +1)7], k =0,1,2,...,

this is the condition for @ in (3.22), provided that @ >0. The complex plane is symmetric
therefore it is not necessary to investigate the features of (3.21) and (3.22) for w <0 . Both the
sets of contours described by (3.21) and (3.22) are shown in Fig. 3.17. Their intersection
points correspond to the positions of the roots of M(s).
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Fig. 3.17 Contours given by (3.21) (solid, corresponding to R(S,@)=0)
and (3.22) (dashed, corresponding to 1(S,@)=0)

3.4.1 Algorithm for contour plotting

The numerical technique to obtain the level-contours is known as contour plotting. Most
the math software programs provide an algorithm for contour plotting. Such algorithms are
implemented, e.g., in Mathematica’, Maple’ and Mathcad® as ContourPlot, in Matlab® as
Contour. Let us also mention the data analysis and visualisation software PV-Wave®, where
the algorithm Contour is available for gridded data and Contour2 for scattered data and
NCAR Graphics’ with the advanced contouring package of Fortran subroutines Conpact.

2 http://www.wolfram.com/

? http://www.mapleapps.com/
* http://www.mathsoft.com/

> http://www.mathworks.com/
® http://www.vni.com/

" http://ngwww.ucar.edu/



Easily applicable method, that is used in some of the mentioned software tools, e.g., in
Matlab, is known as level curve tracing algorithm, see, e.g., Cottafava and Le Moli, (1969),
Snyder, (1977), (see also the thesis of Aramini, 1981). The method seems like the obvious
way to perform contour plotting if the function values are available only at the vertices of a
regular grid. The fundamentals of the algorithm can be summarised as follows. All the edges
in the grid that are intersected by the level curve are marked. Subsequently, for all the marked
edges, the interpolation is performed in order to obtain a better approximation of the
intersection points of the curve and the edges, see Fig. 3.18. Finally, starting from an
intersection point, the method searches for the neighbouring point to draw a line segment of
the contour. Such a procedure is carrying on until the boundary of the region is reached or the
contour is closed. There exist many modifications of the method that differ particularly in
accomplishing the curve tracing. However, most of them are based on the approximation of
intersection points of the curve and the edges. It should be noted that the grid cells do not
have to be necessarily rectangular. Triangular grid cell for contouring process has been used,
e.g., in Preusser, (1984). A different approach has to be used if the data are scattered. The
algorithm based on approximation of the level curves by piecewise polynomials, which is
used in software PV-Wave as Contour2, has been proposed in Preusser, (1986).

B B B B B B B B

Fig. 3.18 The idea of constructing the zero-level contour

Since software Matlab is commonly used in the field of control engineering, I have
decided to use its function contour for accomplishing the contour plotting. Let us explain the
implementation of the level curve tracing algorithm for obtaining, e.g., the curve R(B,@) =0
(R"). The first step consists in evaluating the function R(f,®) for all the nodes of the grid on

D= [ﬁmin > ﬁmax Ix [wmin s wmax] given by



ﬁk = :Bmin +kAg, k=0,1,.....kmax> Kmax =int|:3max _ﬁminl/As +1

, (3.23)
@ = Opin +1A, 1 =010, oy, Imax =10t@ax — Omin]/ Ay +1

where A is a chosen increment (step) of the grid. Thus the values of R(f,®) can be stored
in the following matrix

R('Bo’a)lmax) R(ﬂl’a)lmax) R('Bkmax’a)lmax)

RY - ‘ 3.24
RBpo)  RBL.@) .. RB o) 629
R(Sy.@0) R(B,an) ... RS @)

max

The way of approximating the zero-level contour based on matrix (3.24) is sketched in
Fig. 3.18 and is accomplished according to the method described as the level curve tracing
algorithm. Thus the approximations of the intersection points of the edges and the zero-level
contour are obtained using the linear interpolation method. The level curve approximation is
stored in the matrix

R0= bO bl b2 b3 b4 b5 b6 b7 b8 b9 bIO bll ...... (325)
‘;{}0 ‘:{}1 WQ, W3 "/{}4 ‘:{}5 w6 W7 "/{/'8 W9 WIO Wll ......

in which each column corresponds to one point of the contour in the s-plane. As can be seen,
one value in each column of R® is marked by the chevron. Non-marked values correspond to
the values on the grid while the chevron marked values are the results of the interpolations
performed on the edges, see Fig. 3.18. R" given by (3.25) corresponds to the contour in
Fig. 3.18. For example

0 Ry |
b2_182’ wz_a)l+|R(,82,a)])_R(182’w2)|As

) (3.26)
59:601+| R(Bs.ws5) |A Wy = s

|R(,35,605) —R(,B6=w5)| a

In this way, the both the contours R(f,@) = 0 and I(5, @) = 0 are approximated. The idea of the
algorithm will be explained in the Example 3.4.

Example 3.4

Let us find the contours R(fB,@)=0 and I(f,w)=0 corresponding to quasipolynomial
(3.18) from Example 3.4, (where the contours have been found analytically), by means of
described contour algorithm. First step of this task consist in mapping the surfaces R(5, @) and
I(B,® on the grid region b =[-10,2]x[0,30] with chosen A; =0.3, see Fig. 3.19 and Fig.
3.20, respectively. Consequently the zero-level contours result from applying the contour
plotting algorithm (contour, Matlab). As can be seen, putting the contours from Fig. 3.19 and

Fig.3.20 into one figure, the result would obviously correspond to Fig. 3.17, where the
analytically found contours may be seen.



Fig 3.19 Surface R(s) (s = S+ jw) corresponding to M(s) given by (3.18) and the contours
R(B,@) = 0 (intersections of the surface with the s-plane)

Fig. 3.20 Surface I(s), (s = B+ jw) corresponding to M(s) given by (3.18) and the contours
I(f,@) = 0 (intersections of the surface with the s-plane)



Example 3.5

As in Example 3.4 let us find the zero-level contours R(B,@) =0, I(f,a) =0
corresponding to the following quasipolynomial

M (s)=det(sI - A(s)) = 5> + Oy (s)s% + Qy(s)s + Oy () (3.27)

—exp(—8.4s) exp(—4.1s) exp(—6.6s)
exp(—5.2s)7—3exp(—12.5s) — exp(—4.35) exp(=3.75)
3s

exp(~7.85) eXP(‘6'5S12—j:p(—18.9s)

Evaluating the determinant, we obtain

A(s)=

exp(=5.2s)

Qp(s) =—exp(—=17.9s) — exp(=5.2s) —exp(=12.5s) exp(=6.5s) —exp(-18.9s)
7.3s 12.45
_ exp(=5.2s) —exp(—12.5s) exp(—12.15)+ exp(—5.2s) —exp(—12.5s)
7.3s 7.3s
—exp(—15.65) —exp(—18.75)

exp(—6.6s) —

exp(—9.3s) —

exp(—6.5s) —exp(—18.9s)
12.4s

B exp(=5.2s) —exp(—12.5s)
7.3s

0, (s) =exp(—8.4s) + exp(—4.3s) —exp(—5.2s)

0, (s) =—exp(-9.5s) —

exp(=3.7s) —exp(—13.6s5) + exp(—12.7s) —

exp(—4.1s) —exp(—14.4s)

Re(s)
Fig. 3.21 Contours R(S,@) = 0 (solid), I( 5, @) = 0 (dashed) corresponding to (3.27)
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Fig. 3.22 Surface R(s) (s = + jw) corresponding to M(s) given by (3.27) and the contours
R(B,@) = 0 (intersections of the surface with the s-plane)
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Fig. 3.23 Surface I(s), (s = B+ jw) corresponding to M(s) given by (3.27) and the contours
I(f,@) = 0 (intersections of the surface with the s-plane)



The contours have been found using the same procedure as in Example 3.4. The
surfaces of R(f,@) and I(f,@) are mapped on the region D =[-0.4,0.4]%[0,1.2] with the

increment A, =0.015, see Fig. 3.22 and Fig. 3.23. The contours R(B,@) =0 and I(B,@) =0

can be seen in Fig. 3.21. Obviously, there are seven complex roots (intersection points of
R(B,@) =0 and I(S,@) = 0) and one real root (intersection point of R(f,@) = 0 and axis Re(s))
located in the region . As can be seen, the terms Q;, i=0,1,2 of M(s) given by (3.27) are
quite complicated functions. Even though the quasipolynomial is only of the third order, the
functions R(B,@) and I(B @) are not trivial. Due to the terms representing the linear
distribution of two delays in (3.28), computing the eigenvalues of the matrix by means of a
method based on discretization (seen in sections 1.2.7-1.2.10) would be rather complicated
task. On the other hand the method described above indicates the positions of the eigenvalues

of A(s) directly and without extensive effort, using only the tools available in software
Matlab.

3.4.2 Locating the intersection points

The positions of the quasipolynomial roots are given by the intersection points of the
zero-level contours R(S,@) =0 and I(f,@) = 0. These intersections can be easily identified
visually, see e.g. Fig. 3.17 or Fig. 3.21. The estimates of the intersection points can be used as
the starting points for Newton's numerical method. In this secion, I am going to introduce a
method for automatic locating the positions of the intersections of R(S,@) = 0 and I(f,@) = 0.
In case of computing the real roots of M(s), see Fig. 3.15, the roots are the intersection points
of the function M(s) with the s-axis. The problem of locating the complex roots of M(s) can be
solved analogously to that case. Let us consider that we have found the points of one of the
zero-level contours, e.g., R(S,@) = 0. The points are stored in the matrix

R =[8, o, J k=0.1,.. (3.28)

see (3.25), ordered to approximate the contour by connecting the points by the line segments.
Let us introduce the function

1) =1(B,.@,), k=0.,.. (3.29)

Let the values f; + jw, that are closest to the roots be marked by the indexes r;, the
following inequality holds

IR(r) Ip(r+1)<0 (3.30)

Thus, selecting ,Bri + jw,, using (3.30) the approximations of the roots are given by

Ig(r)
,Bi,0=ﬁri+ I (r-)fll(r-+l) ﬂri+l_ﬂri
R\i R\i (3.31)
Ip(r:
@ = @, + R (1) @, 11— O,

These approximate positions may be used as the starting points for Newton's method if the
enhanced accuracy of the root approximations is required. If the step of the grid is not too
large, s;0 = ,Bri + jw,, can be directly considered as the starting points for Newton's method.



The described approach for locating the roots of M(s) is visualised in Fig. 3.24 where
the contours R(S, @) = 0 corresponding to M(s) given by (3.27) from Example 3.5 are shown.
The region is chosen 5 =[-0.2,0.4]x[—0.15,65] in order to show the way of locating a real

root as well. On these contours, the normalised function

= I (k)
= =0,1,... 3.32
Ir(k) ATk k=0, (3.32)

has been evaluated and it is visualised in Fig. 3.24 by the thicker lines. Due to the
normalisation, the function I r(k) acquires only two values, either 1 or -1 (if Ix(p)=0,
(3.32) has to be solved as the limit with /,(p) =0, and Ip(p) = 0_).

10«
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0.4 0-5

02 0.3

0 0.1 Im(s)
0.4 -0.1

Fig. 3.24 Zero-level contours R(f3, @) = 0 with the curves I (k) evaluated on the contours

The positions of the roots are indicated by the intersection points of I (k) and R(f,@) (given
by (3.28)). Obviously, these are the points where I (k) changes its values from 1 to -1 or vice
versa. As can be seen in Fig. 3.24, there are four roots in the region 5. One root is real and
the other roots are complex. The complex roots are marked with even indexes, because they
have complex conjugates with negative imaginary parts. Let us compare Fig. 3.24 with the
corresponding part of Fig. 3.21. The complex roots are in the positions of the intersection
points of the contours R(f,@) =0 and I(f,@) = 0. However, there is no intersection of the
contours in the real root. It is given by the nature of the real roots where the necessary and
sufficient condition is R(f) =0. As can be seen in Fig. 3.24, I, (k) intersects the contour
R(B,@) = 0 in the root s; anyway. It is due to the symmetry of the s-plane (The symmetry is
not simply mirror like, but the mirror reflex is inverted, i.e., the vertical axis is inverted).

To conclude, using the described approach for automatic locating the positions of the

roots, only one of the surfaces is necessary to be mapped. The roots are located as the
intersection points of the zero-level contours and the curves that correspond to the values of



the other surface (not mapped one) which are evaluated on the contours. However, I
recommend to map both the surfaces anyway. Mapping both the contours R(fS,@) =0 and

I(f,@) = 0 provides the possibility to check the resultant approximations of the root positions
visually. Therefore, I will keep on displaying both the surfaces and sets of contours.

3.4.3 Locating multiple roots

As will be shown below, the rootfinding method based on quasipolynomial function
mapping does not solve the problem of multiple roots in a different way. The multiplicity is
simply given by the number of intersecting contours in the particular point. This very
convenient feature of the algorithm will be demonstrated in the following example.

Example 3.6
Let us find the roots of the quasipolynomial

M (s)=(s+exp(—s))" (3.33)

for n = 3 located in the region 5 =[-10,2]%[0,30]. In order to achieve smooth contours, let
us choose A; =0.1.

30

25

20

15

Im(s)

10

Re(s)
Fig. 3.25 Mapping M(s) given by (3.33),n =3
R(B,@) =0 - solid, I(f,@) =0 - dashed, A, =0.1

The resultant maps are shown in Fig. 3.25. As can be seen, at each of the points
corresponding to the root approximations, three couples of contours are intersected. Thus, the
points correspond to the triple roots. However, each of the roots is located independently. The
values of the starting points of the Newton's method s; resulted from the contour mapping
and the more precise approximations s; obtained by using Newton's method are shown in



Tab. 3.2. There are three sets of results of Newton's method in Tab. 3.2 differing in &y that
indirectly prescribes the accuracy of Newton's method, see (3.13). The values s;o are not
computed from (3.31) but they are taken from (3.28), given by s; = ,Bri + jw, where r; is

determined by (3.30) (one of the values ,Bri , @, 1s a grid value). Obviously, with decreasing

value of &y the root triples tend to converge to their common target that is the value of the

corresponding triple root.

Tab. 3.2 Approximation of the roots with respect to &y

i sio, A, =0.1 sin €y =0.01 siy €y =0.001 si, €y =0.0001

1 | -3.2000 +26.5742) | -3.2713 +26.5793] | -3.2863 +26.5804] | -3.2876 +26.5805]
3 | -3.2305+26.7000j | -3.2793 +26.5951j | -3.2870 +26.5817j | -3.2877 +26.5806;]
5 | -3.4000 +26.5831j | -3.3037 +26.5808] | -3.2892 +26.5805] | -3.2880 +26.5805]
7 | -2.9000 +20.2633] | -3.0056 +20.2714] | -3.0183 +20.2723] | -3.0201 +20.2724]
9 | -3.0000+20.3001j | -3.0112+20.2846j | -3.0190 +20.2740j | -3.0201 +20.2726j
11| -3.0169+20.2000j | -3.0189 +20.2582j | -3.0201 +20.2706j | -3.0202 +20.2723;
13| -2.7000 +13.9241j | -2.6673 +13.9414] | -2.6544 +13.9485] | -2.6534 +13.9491]
15| -2.6000 +14.0078j | -2.6426 +13.9601j | -2.6518 +13.9506j | -2.6531 +13.9493;
17 | -2.7000 +13.8977j | -2.6623 +13.9384j | -2.6544 +13.9478j | -2.6533 +13.9491j
19 | -2.0000 + 7.5815) | -2.0445 +7.5866] | -2.0607 + 7.5885] | -2.0621 + 7.5886;
21| -2.1000 +7.6048) | -2.0793 +7.5960j | -2.0638 +7.5893j | -2.0624 +7.5887j
23 | -2.1048 +7.6000j | -2.0815+7.5938) | -2.0640 +7.5891j | -2.0624 +7.5887]
25| -0.2564 + 1.4000] | -0.3054 + 1.3490j | -0.3170 + 1.3383] | -0.3180 + 1.3373]
27 | -0.4000 + 1.3051j | -0.3344 +1.3300j | -0.3196 + 1.3366j | -0.3183 + 1.3372j
29 | -0.4000 + 1.2996j | -0.3343 +1.3289j | -0.3196 + 1.3365] | -0.3183 + 1.3372j

Seemingly, locating the triple roots of (3.33) by means of the method based on M(s)
mapping has not brought about any difficulties. The problem has been solved in the same way
as if the roots were single. In order to highlight the potentials and to show the limits of the
method, let us try to solve the same task for M(s) given by (3.33) with n = 10. The maps of
such quasipolynomial are shown in Fig. 3.26. Since the figure is not sufficiently transparent, a
detailed view of one set of the intersection points of the contours is shown in Fig. 3.27
(A; =0.01). As can be seen, the result is in accordance with the assumption that there are 10

couples of intersecting contours.

In contrast to the visual perception that the intersecting contours are quite smooth, in
fact, the contour plotting algorithm used provides worse results. As can be seen in Fig. 3.28
(for n=3) and Fig. 3.29 (for n = 10), where the contours are shown in the vicinity of one of
the multiple roots, the contours are formed in a different way. In case of n = 3, this incorrect
fitting of the contours did not influence the result. However in case of n =10, there are
located 15 intersection points, which does not correspond to the multiplicity of the root. The
contour mismatch is given by the plotting algorithm used and would not be probably
eliminated by choosing a smaller Ag.



Re(s)
Fig. 3.26 Mapping M(s) given by (3.33),n =10
R(B,@) =0 - solid, I(f,@) = 0 - dashed, A, =0.1

Re(s)

Fig. 3.27 Detailed view of mapping M(s) given by (3.33), n =10
R(B,0) =0 - solid, I(f@) = 0 - dashed, A; =0.01
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Fig. 3.28 Detailed view of mapping M(s) given by (3.33), n = 3 in the vicinity of the
location of a multiple root, R(5,@) = 0 - solid, I(S,@) = 0 - dashed, A =0.1
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Fig. 3.29 Detailed view of mapping M(s) given by (3.33), n = 10 in the vicinity of the
location of a multiple root, R(S,@) = 0 - solid, I(f@) = 0 - dashed, A; =0.01
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Fig. 3.30 Mapping real part of M(s) Fig. 3. 31 Mapping imag. part of M(s)
given by (3.33), n=1 given by (3.33), n=1

Fig. 3.32 Mapping real part of M(s) Fig. 3.33 Mapping imag. part of M(s)
given by (3.33), n=2 given by (3.33), n=2

Fig. 3.34 Mapping real part of M(s) Fig. 3.35 Mapping imag. part of M(s)
given by (3.33), n=3 given by (3.33), n=3



To sum up, the mapping based method for computing the roots may be used for locating
the approximate positions of the multiple roots without any modifications. However, the
danger of the contour mismatching in the vicinity of the multiple roots has to be taken into
consideration. It is advisable to check the contours visually by inspecting the view of the
vicinity of the multiple roots. In Fig. 3.30 - Fig. 3.35, the surfaces corresponding to
quasipolynomial (3.33) with n=1..3 are shown with the zero-level contours. Obviously,
considering the character of the contours with increasing n, the contours are supposed to be
smooth even in the vicinities of the multiple roots. The unsmoothness seen in Fig. 3.28 and
Fig. 3.29 is obviously caused by the contour plotting algorithm used in which the requirement
of contour smoothness is not involved.

Example 3.7

Let us return back to the task solved in Example 3.1, i.e., locating the root positions of
M(s) given by (3.11) in the region 2D =[-1, 1]X[0, 2], by means of Weyl's construction and
the argument principle rule. Applying the mapping based algorithm the maps shown in
Fig. 3.36 indicates that the roots s 3 are the double complex roots. Using A;=0.01 and

&y = 0.0001 the root approximations seen in Tab. 3.3 have been obtained.

Tab. 3.3 Approximation three roots of M(s) given by (3.11)
i 5.0 A, =0.01 s;, €y =0.0001
-0.3200 + 1.3407; -0.3182 + 1.3373;j

1
3| -0.3300 + 1.3336] | -0.3182 + 1.3372;j
5| 0.1700 + 1.6707j 0.1728 + 1.6737;j

0.2 |

o

-1 -0.5 0 0.5 1
Re(s)
Fig. 3.36 Mapping M(s) given by (3.11),
R(B,@ =0 (solid), I(B,@) = 0 (dashed), A; =0.01



3.4.4 Ill-conditioned (quasi)polynomials

The major limitation of the mapping based algorithm is the incapability to deal with the
ill-conditioned (quasi)polynomial functions. Such a problem is often encountered in solving
the task of computing the roots of higher order polynomials, see Wilkinson, (1963, 1984),
Peters and Wilkinson, (1971). A root is called ill-conditioned if it is sensitive to small changes
in the coefficients of the polynomial caused, e.g., by truncation errors. Conversely a root is
called well-conditioned if it is comparatively insensitive to such perturbations. Roughly
speaking a root which is well separated from the other roots is likely to be well conditioned,
while roots that are close together are likely to be ill conditioned. The closeness is not meant
as the absolute distance between neighbouring roots, but the ratio of their magnitudes. If the
ratio is close to one, the zeros are ill conditioned. Therefore, obviously, the multiple roots are
ill conditioned. A multiple root is often split into a cluster of roots because of the
perturbations in the (quasi)polynomial or computational inaccuracies. Dealing with ill-
conditioned polynomials requires using iterative algorithms with multi-precision arithmetic,
see Bini, (1996), Bini and Fiorentino, (1999, 2000), Fortune, (2001).

Well-known ill-conditioned polynomial is Wilkinson polynomial
n
M(s)=[]es -0 (3.34)
i=1

which is ill-conditioned already for n = 20. Although the mapping based rootfinding method
has been designed for computing the roots of quasipolynomials, obviously, it can also be used
for locating the roots of polynomials. Thus, let us try to locate the roots of (3.34) by means of
mapping based method, see the result of the mapping in Fig. 3.37. As can be seen, the located
roots truly correspond to the roots of (3.34), i.e., s; =i, i=1..20.

Fig. 3.37 Mapping M(s) given by (3.34), n=20,
R(f,@) = 0 (solid), /(@) = 0 (dashed), A; =0.1

Let us show the effect of ill-conditioned eigenvalues in practise. For example if the
coefficient that corresponds to the 19™ power of s in (3.34) is multiplied by a factor of
1.00000000035, the distribution of the roots is considerably changed, see Fig. 3.38. Obviously
the roots sy(..so( (indexing the roots in the left-right direction) are extremely ill-conditioned

roots because their displacements are quite large even though the coefficient is multiplied by
such a small constant. On the other hand the other roots are not apparently so sensitive.
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Fig. 3.38 Mapping M(s) given by (3.34), n=20, with coefficient corresponding to 19" power
of s multiplied by 1.0000000005, R(B,@) = 0 - solid, I(,@) = 0 - dashed, A, =0.1
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Fig. 3.39 Mapping M(s) given by (3.34), n=20, detailed view
R(B,@ =0 (solid), I(B,@) = 0 (dashed), A; =0.01
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Fig. 3.40 Detail of R(S,@) = 0 of (3.34) Fig. 3.41 Detail of R(S,@) = 0 of (3.34)

from Fig. 3.37,A; =0.1 from Fig. 3.39,A; =0.01
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Fig 3.42 Surface R(s) (s = S+ jw) corresponding to M(s) given by (3.34)
and the contours R(S5,@) =0
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Fig 3.43 Surface R(s) (s = S+ jw) corresponding to M(s) given by (3.34)
and the contours R(S5,@) =0



On the basis of the application of the mapping based algorithm performed, the results of
which are seen in Fig. 3.37 and Fig. 3.38, one could conclude that the task of computing the
roots of (3.34) for n=20 has been managed without any difficulties. However, as will be

shown, the task has been solved successfully only because of suitable choice of Ag. Let us
look at locating some of the most ill-conditioned roots in more detail using A; =0.01, i.e., ten
times less A than in the previous case. The result of such experiment can be seen in

Fig. 3.39. Obviously, something unexpected occurs as the curves approach the real axis. From
the certain points, the curves are not smooth and compact. This incompactness of one of the
curves is shown in Fig. 3.41 in more detail. As can be seen in Fig. 3.42, the incompactness of
the curve is caused by unsmoothness of the surface R(fS,w) in the domain of ill-conditioned

roots. The surface is apparently unsmooth only in the domain of ill-conditioned roots since
the surface is smooth in the vicinity of the well conditioned root sq, see Fig. 3.43. The correct
result of locating the roots of (3.34) with A; =0.1 was given by overcoming the noise-like
unsmoothness of R(S,w) by choosing rather rougher grid, compare Fig. 3.40 and Fig. 3.41.
However, this trick does not work for (3.34) with higher n. In Fig. 3.44 the mapping of (3.34)
with n =25 i1s shown using A;=0.1. As can be seen, the algorithm has broken down
completely in the domain of ill-conditioned roots because of enhanced unsmoothness of

R(S,w).
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Fig 3.44 Mapping M(s) given by (3.34), n=25
R(B,@) = 0 (solid), I(f,a) = 0 (dashed), A; =0.1

The results of performed experiments imply that the mapping based algorithm is not
reliable if used for locating the roots of ill-conditioned (quasi)polynomials. However, since
the method is not iterative, the converse result could have been hardly expected. In case of
polynomials, the application capability of the algorithm is comparable with the non-iterative
methods that consist in computing the eigenvalues of companion matrices of polynomials
(available, e.g., in Matlab as function roots). Nevertheless, the mapping based rootfinding
algorithm has been primarily designed for analysing the dynamic features of anisochronic
(TDS) system. As has been already emphasised, the modelling approach using the delays as
the dynamic elements results in low order plant models as a rule. Consequently, the
characteristic equations are given by the low degree quasipolynomials for which the
probability of occurrence of ill-conditioned roots is relatively low.



3.4.5 Choosing the step of the grid

A very important issue that has not been discussed yet is the task of choosing the step
(increment) of the grid A,. Suitable choice of A is crucial in the successful application of
the mapping based rootfinder. The step should be chosen small enough so that the contours
were smooth and mapped well. Too large A; may even cause omitting some of the roots. On
the other hand, too small A results in unacceptably large duration of the root-locating
process. Solving the task of choosing A requires balancing these two contradictory
requirements. Some aspects of the task will be discussed in the following example.

Example 3.8

Let us compare the duration of the rootfinding process using the mapping based
method for locating the approximate positions of the roots and Newton's method to enhance
the accuracy of the approximations of the poles. Let us consider the quasipolynomial from
Example 3.5, i.e., given by (3.26) and 5 =[-0.4,0.4]x[0,1.2]. Intuitively, A, should be
chosen according to the range of the shorter side of D. The step of the grid that assures
visually smooth contours is approximately given by 0.01 of the shorter side. Thus, let us
denote this step as Aoy, duration of the corresponding mapping based root locating

N

process as ty( ;. and the duration of the process of the final root assessment by means of
Newton's method with &, =0.0001 as 7ygpo;. Considering the boundary values
D =[-0.4,04]x[0,1.2], A 01 =0.008, t;0;=5.4s, tygo =1.3s(PC: 450 MHz, 128 MB
RAM).

Re(s)
Fig 3.45 Mapping M(s) given by (3.27),
R(fB,@) =0 (solid), I(B @) = 0 (dashed), A; =0.032



Tab. 3.4 Time of the periods of rootfinding process depending on A

in time units #; oy _and 7xq o1

As00174 | As0.01/2 | Aso01 | 285001 | 4A5001 | 8As50.01
79 14.3 3.5 1 0.39 0.22 0.19
N 0.85 0.98 1 1.15 1.85 3.08
I+t 11.7 3.0 1 0.53 0.54 0.75

In Tab. 3.4 we can see the duration of the periods of the rootfinding process with
respect to A,. Time periods are related to #;5g;and ty¢;. According to Tab. 3.4, the

optimum step of the grid seems to be Ag =2A; o ;. Further increasing the step does not result

in shorter duration of the computation. The time period of locating the root is shorter but on
the other hand, due to the rather rough grid the located roots s;o are far from s;. Therefore

more iterations of Newton's method have to be done which results in longer 5 . On the other
hand if Ay <A 01, 77 increases considerably while the change of 7y is very small. M(s)

mapping obtained using Ay =4A; o; =0.032 is shown in Fig. 3.45. As can be seen, the
curves are not smooth which implies the step should be chosen shorter.

With respect to the results obtained in Example 3.8 and with respect to my experience
with choosing A, the step of the grid should be chosen according to the following formula

A, =(0.01..0.03)min{( Brax = Luin)» (@rmax — Prin)} (3.35)

Such a choice of A, should guarantee both, visual smoothness of the curves and acceptable
duration of the root-finding process. If A, chosen according to (3.35) is still too large, i.e., the
curves are not formed well, instead of reducing A, the region > should be partitioned into
several regions in which the task should be solved with smaller A . The prime guess of the

size of b can be done with respect to the values of the system ultimate frequency considered
as the primary scale factor of the s-plane.

3.4.6 Practical aspects of the algorithm implementation

The algorithm based on Weyl's construction with the argument principle based test is
suitable to be applied for locating the roots of M(s) if there are not many roots in the region
. Although the algorithm of recursive dividing the suspect regions is quite simple, its

computer implementation requires using an elaborate searching approach that would
guarantee that none piece of the region remains unsearched. On the other hand, the second
rootfinding algorithm based on M(s) mapping can be easily implemented, e.g., by means of
Matlab functions. Therefore, I have chosen this mapping based rootfinding algorithm for the
final computer implementation. Math environment Matlab has been chosen for the
implementation because its environment allows user-friendly combining of the predefined and
user-written functions in the program. Another reason of choosing Matlab is given by the fact
that the program is quite familiar in the field of control engineering.



To sum up the algorithm for locating the roots of (quasi)polynomials can be
summarised as follows:

Algorithm 3.1 Mapping based rootfinder
I The region D=[Lin> Bmax JX[@mins@max ] in Which the roots of M(s) are to be
found and suitable step of the grid A are defined.

2 The region b is covered by the grid of nodes given by (3.23)

3 For each of the nodes f) + jw;, the function M (B, ,w;) is evaluated and the
values of R(fy,w;) and I(f;,w;) are found by splitting M (f;,®,;) into real and
imaginary part. Thus the values are stored in matrix R? in the form of (3.24) and in
the analogous matrix I°.

4 Using a contour plotting method, the zero-level contours R(B,@) =0 and I(B,0) =0
are mapped over the values in matrices R® and I°. The points of the contours given
by the couples B and @ are stored in matrix R’ in the form of (3.28) and in the
analogous matrix I’

5 3D curves Ip are evaluated over the contours R(S,@) =0. The values of I(h)
given by (3.29) are obtained by evaluating I(3,@) for the values stored in R".

6 The intersection points of the contours R(S,@) =0 and I(B,@) =0 are located by
means of searching for the values ,Br,. +jw, and ,Bri +1+ ], from R’ for which

Ipchange the sign, see (3.30). Each of the roots of M(s) located in 2 is
approximated by s; o = S, +j@, .

7 The accuracy of the approximations of the roots is enhanced by means of Newton's
iteration method (3.12) with the starting values s; o, i=1,2,....

Unlike polynomials that are represented by the row matrix of the coefficients
corresponding to the powers of the operator s, quasipolynomial are not so easily treatable. If a
quasipolynomial represents the characteristic functions of TDS with the various distributions
of the delays, its terms corresponding to the powers of s acquire quite complicated forms, see,
e.g, Example 3.5. Thus the best representation of quasipolynomials seems to be the form M(s)
involving the operator s. Such a requirement can be performed by means of Symbolic Math
Toolbox of Matlab that allows symbolic variables to be defined. Symbolic Math Toolbox
involve symbolic computation into Matlab's numeric environment using the kernel of Maple
as the computational engine. Defining operator s as the symbolic variable, the
quasipolynomial can be written directly in this operator and none special form of
quasipolynomial is required.

Using the calculus of Symbolic Math Toolbox and functions of Matlab I have
programmed the function aroots performing the Algorithm 3.1. The command line function
aroots is of the following syntax

P=aroots(M, D, A,,&y)

see Apendix 1, where M is the quasipolynomial in the predefined symbolic variable s, 3 is
the suspect region, A, is the step of the grid, &y is the absolute value of the maximum
difference of the root approximations resulting from two successive steps of Newton's



iteration and P is the vector of computed roots. The implementation of the algorithm will be
shown in the following example.

Example 3.9

Let us compute the root approximations of the function M(s) given by (3.27) from
Example 3.5 in the region 5 =[-0.4,0.4]%x[0,1.2] with A;=0.01 and &y =0.0001. The

following sequence of the commands written in the command line of Matlab will perform the
task

>>Syms s

>>A=[-exp(-8.4%s) exp(-4.1*s)  exp(-6.6*s);
(exp(-5.2%s)-exp(-12.5%s))/7.3/s  -exp(-4.3%s)  exp(-3.7%s);
exp(-7.8%s)  (exp(-6.5%s)-exp(-18.9%s))/12.4/s  exp(-5.2%s)]

>>P=aroots(det(s*eye(3)-A), [-0.4 0.4 0 1.2],0.01, 0.0001)

In the first line, the symbolic variable s is defined using the function syms. The matrix A(s) is
then written using this symbolic variable. Finally the function aroots is written in the
command line according to its syntax with the characteristic function evaluated using the
command det (evaluating the determinant). The resultant root approximations are stored in the
vector P

>>P =

0.0587 + 0.99105
0.3061

0.0310 + 0.8285;
-0.2190 + 0.8946;
-0.2676 + 0.6025;
0.1326 + 0.4395;j
-0.0497 + 0.2857;
0.1908 + 0.3158;j

As can be seen, using the function aroots for locating the roots is quite easy. The only
drawback of using the symbolic calculus is rather large memory consumption in case of
dealing with the quasipolynomials resulting from higher order TDS with complicated
distributions of the delays, i.e., if the quasipolynomials acquire too complicated forms.

To conclude, the mapping based rootfinder given by algorithm 3.1 may be applied to
compute both the poles and zeros of both retarded and neutral system with lumped and
distributed delays (according to the rules for their distribution, see (1.18)). Naturally, the
algorithm can also be used to compute the roots of (low degree) polynomials and the roots of
exponential polynomials (which determine the essential spectrum of the neutral equations). In
fact, the class of functions whose roots can be computed using the rootfinder is broader. Since
the subject solved in this thesis deals with the analysis of TDS, the applicability of the
mapping based rootfinder to further functions is not investigated. The applicability of the
mapping based rootfinder is limited to the well-conditioned functions, which rather bounds
the maximum degree of the (quasi)polynomials which can be analysed using the rootfinder.
On the other hand, the anisochronic approach provides low order models of real plants as a
rule. Thus the mapping based rootfinder is very valuable tool in the analysis of the dynamics
of TDS.



4. APPLICATION OF MAPPING BASED ROOTFINDER IN ANALYSIS AND
SYNTHESIS OF TIME DELAY SYSTEMS

4.1 Introduction

In this part of the thesis I am going to show some results of the analysis and the
synthesis of TDS achieved by using the developed rootfinding algorithm based on
characteristic function mapping. Features of both retarded and neutral systems will be
investigated on the basis of computed dominant parts of their spectra of poles and zeros.

In section 4.2, according to the second objective of this thesis stated in Chapter 2, the
features of the first order anisochronic model will be investigated (It should be noted, that the
model is infinite dimensional in fact. By the order, we consider here the number of integration
operators used in the model). The model will be further considered as the basic element in the
anisochronic modelling approach. Even though the model is described only by a single
functional differential equation, thanks to the delays involved, the model can be used to
approximate the features of the systems with higher order dynamics. First, the identification
method based on the relay feedback test will be extended to the first order anisochronic model
with two delays. This method has proved to be a suitable method for identifying the
parameters of real plants. Since the identification of the TDS is not the task to be solved in
this thesis, only the results of the extension of the mentioned identification method will be
presented. Further in section 4.2, the features of the first order model with more than one
delay will be investigated. Particularly, the potentials of assessing the dominant poles and
zeros will be studied.

In section 4.3, beyond the framework of the objectives of this thesis, some of the
features of the internal model control (IMC) design based on the first order anisochronic
model will be investigated. Particularly, it will be shown, that the IMC design may result in
the neutral character of the closed loop system. This feature will be shown in the several
examples and the character of the spectra of the closed loop system will be studied. As the
prime result of the section, the robust IMC design will be introduced.

The basic feature of TDS is the infinite spectrum of the poles. Even though TDS have
infinitely many poles, the system dynamics are determined by a group of few poles as a rule.
In section 4.4, according to the third objective of this thesis stated in Chapter 2, I will
introduce the method for selecting the group of the significant poles of TDS. The method is
based on the generalised Heaviside expansion of the particular input-output transfer function.
Using the expansion, the transfer functions of the system modes are obtained. The evaluation
of the dynamics is based on evaluating the weighting functions corresponding to the transfer
functions of the modes.

In sections 4.5 and 4.6, according to the fourth objective of this thesis stated in
Chapter 2, the potentials of the pole placement methods based on the coefficient feedback
applied to TDS will be investigated. First, the gradient based pole placement method will be
introduced. The method arises from the linearity of the characteristic function of the closed
loop system with respect to the feedback parameters. The method may be used for direct pole
placement. In section 4.6, the modification of the continuous pole placement method using the
gradient based pole placement design and the quasipolynomial mapping based rootfinder will
be introduced. As will be shown in section 4.7, the application of this rootfinding algorithm
allows the method of the continuous pole placement to be used also to stabilize a class of the
neutral systems. In section 4.8, the features of the continuous and direct pole placement
methods will be discussed and the strategy suitable to obtain favourable pole placement result
will be suggested.



4.2 First order TDS, features and identification
4.2.1 First order anisochronic model with one delay

In many industrial applications, the following SISO first order model with the input
delay can be encountered

G(s) = y(s) _ Kexp(=s7) @1
u(s) Ts+1

where K is static gain coefficient, T is time constant and 7 is input time delay, see, e.g.,

Goodwin, et al, (2001). In fact, according to Hang et al., (1993), the model is sufficient for

adequate approximation of most of the industrial processes. An identification method of

model (4.1) parameters that proved to be suitable for practical implementation is the method

based on relay feedback test. For large classes of processes, relay feedback gives an

oscillation with a period close to the process ultimate period ¢, (t, =27/, , where o, 1is the

ultimate frequency). The process ultimate gain k,is approximately given by Astrém and
Higglund (1984,1988a,b) as

4uy,
u =
TVm

k

(4.2)

Given k,and @, as the results of relay feedback test and K resulting, e.g., from the process
step response, the remaining two parameters of model (4.1) can be obtained from

[[22
& (4.3)

W,

T=

_ m—arctan(@,, 7)

w,

T

(4.4)

see Hang, et al., (1993). In Wang, et al., (1999) a biased relay (|umm| #* |umax|) is suggested to

be used instead of the symmetric relay. Using such a modification, all the parameters of
model (4.1) can be identified from the relay feedback test. Using this biased relay, the
oscillations are not symmetric and the parameter K can be computed from

[ yaman
K=" 1>, (4.5)

| ;u(h)dh

In my experience, the biased relay based identification is not suitable to be applied to real
plants because the values of integrals in (4.5) are very sensitive to the deflections of the
system from its operational point (caused, e.g., due to the process noise) during the
identification process. Moreover, the non-linearity of the plant may cause difficulties in
computing K from (4.5). An alternative way of identifying the parameters only from the relay
feedback test consists in the estimation of the input delay 7 from the interval between an
extremum of y(¢) and the preceding relay switch. This method is more robust than the method
based on the biased relay. However, if the plant dynamics are higher order ones, it may be
difficult to identify the extremum of y(7). If the delay is identified in this way, the remaining



parameters of (4.1), i.e., T and K can be computed from the critical parameters k, and @, by
formulas analogous to (4.3) and (4.4).

It should also be noted, that in real plant applications, the relay with hysteresis should
be used in order to make the identification less sensitive to the measurement noise. Using the
relay with hysteresis implies that the critical parameters k, and @, resulting from the
oscillations do not correspond to the critical parameters of the system. The parameters
correspond to the point of the system frequency response which is of slightly lower frequency
than the critical one. Nevertheless, if the hysteresis is small, the values k, and @, can be
considered as the critical parameters.

Although first order model (4.1) is referred to as the suitable model for describing real
plants, the only one mode of the model given by the pole A =—1/T provides rather restricted
potentials in fitting the true system dynamics. Therefore, model (4.1) is suitable only for
rather rough description of non-oscillatory plants. Moreover, this model usually describes
truly the system dynamics in a rather narrow frequency range.

4.2.2 First order anisochronic model with two delays

In order to extend the applicability of the first order model, let us introduce another
delay 7 into the first order anisochronic model. Besides the delayed system input, let us also
use delayed state variable in the model. The anisochronic model then acquires the following
form

G(S) — y(S) — Kexp(_ST)

(4.6)
u(s) Ts+exp(—sn)

see Vyhlidal and Zitek, (2001). Analogous but second order model has been used in
Zitek, (1998). As has been shown in the mentioned references, thanks to the delay in the
denominator, model (4.6) can be used for describing the plants that are usually described by
higher order models. As has been shown in Vyhlidal and Zitek, (2001), if the parameters K
and 7are known, the remaining two parameters of model (4.5) can be obtained from

_ m—arccos{Kk, cos(@w,7)}

w,

4.7)

_ sin(w,n) — tan(w, 7) cos(@, 1)

W,

T (4.8)

where k, (given by (4.2)), and @, result from the relay feedback test. The parameters K and 7
can be obtained, e.g., from the system step response, where K =Ay/Au and 7 is determined
by drawing a tangent line at the inflexion point of the step response and locating the
intersection point with the time axis, see Fig. 4.2. The identification procedure will be shown
in the following example.

Example 4.1
Let us approximate the dynamics of the tenth order classical model
1
G,(s) 4.9)

T (2s+ DO



by first order anisochronic models (4.1) and (4.6) using the identification method based on the
relay feedback experiment and the step response. The ultimate frequency
w, =0.163 (t, =38.5) and gain k, =1.654(y,, =0.77, u,, =1) result from the relay
feedback test applied to system (4.9), see Fig. 4.1. The input delay of model (4.6) 7, =11.5 is
obtained from the step response of (4.9), see Fig. 4.2. Obviously considering K; = K, =1, the
remaining parameters of model (4.1) are obtained from evaluating (4.3) and (4.4), which
results in 7; =13.6, 7T} = 8.1, and the remaining parameters of model (4.6) are obtained from
evaluating (4.7) and (4.8), which results in 7, =15, 7, =6.4.

1.5 ! ! ! ! ! ! ! ! !

1

0.5

N
5 0

0 20 40 60 80 100 ; 120 140 160 180 200
Fig. 4.1 Relay feedback experiment applied to model (4.9)

As can be seen from the step and frequency responses, see Fig. 4.2 and Fig. 4.3, from
the practical point of view, first order model with only one delay (4.1) approximates model
(4.9) quite well. However, comparing the characteristics of model (4.1) with the
characteristics of model with two delays (4.6), the approximation obtained using (4.1) is
considerably worse. The step responses of (4.9) and (4.6) get very close to each other after the
response of (4.6) attains the response of (4.9). The discrepancies of the responses close to
t = 7 are given by the fact that the first order model does not filter the step change of the input
as it is done in case of using higher order models. Therefore, the response of a first order
model can not be smooth in the vicinity of t =7. Analogously, the frequency responses of
(4.9) and (4.6) are very close to each other up to ultimate frequency. They are quite close to
each other even in the third quadrant of the complex plane. Such a good approximation of the
higher order model (4.9) by first order anisochronic model (4.6) is achieved thanks to the
denominator delay 7. In fact, the higher order dynamics is substituted by the anisochronic
relation.

Due to practical point of view, it is reasonable to avoid using the step response in the
identification process. Performing the relay feedback test, the approximation of the critical
point of system response is obtained allowing two parameters of (4.6) to be computed. Thus,
if we find another point of the frequency response, we will be able to compute all the
parameters of (4.6) (using a numerical method). If an integrator element is put in front of the
relay element in the closed loop, a lower frequency of input excitation signal is obtained
corresponding to the point of the system frequency response on the negative imaginary axis
(with argument ®=-7/2). Using a delay instead of the integrator, other points of the frequency
response can be obtained (depending on the delay length). The parameters can be computed
from the overdetermined set of equations, e.g., by least square method. However, it should be
noted that the relay feedback test provide only the approximate values of the frequency



response points and the accuracy of the approximation falls down with the decreasing
frequency.
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Fig. 4.2 Step responses: model (4.9) (dash-dotted) with tangent line in the inflexion point
(dotted), first order approximation (4.6) (solid), first order approximation (4.1) (dashed)
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Fig. 4.3 Frequency responses: model (4.9) (dash-dotted+empty circles), first order
approximation (4.6) (solid and black circles), first order approximation (4.1) (dashed and
asterisks). Marked frequencies: logarithmically spaced vector [0.01 1] into 10 segments.

Prescribed ultimate frequency marked by black square



4.2.3 Dynamics of first order model with delay in denominator

Using the mapping based algorithm for computing the quasipolynomial roots, let us
investigate the distribution of the roots of the quasipolynomial

M(s)=s+exp(—sn) (4.10)

that corresponds to the characteristic function of (4.6) if the time constant 7 is considered as
the time unit, i.e., T/T — 1, n/T — n. In Fig. 4.4 and Fig. 4.5 we can see the trajectories of
the roots of (4.10) with respect to the value of the delay 7. Let us continuously increase the
value of 77 and let us observe the trajectories of the roots of (4.10) closest to the s-plane origin.
Obviously if 77 = 0, the equation (4.10) has only one real root s; =—1. This real root moves to
the left as the value of 7 increases (note that since 77 # 0 equation (4.10) is transcendental,
with infinitely many solutions). The other real root emerges from the minus infinity and
moves towards the origin of the complex plane as 77 increases, see Fig. 4.5. Both the real roots
have the same position s, =—exp(l) for 7=exp(—1). As can be seen, there are also two

complex roots in the region shown in Fig. 4.5 for 77 =exp(—1) (market with black squares).

As n further increases, the former real roots become complex conjugate pair following the
trajectories seen in Fig. 4.4. The trajectories of this couple of roots intersect the imaginary
axis at the values * jfor 7=m/2. Note that this intersection point with the imaginary axis is

common for all the root trajectories and one of the root couple occupy this position as
n=mn/2+2nk, k=1,2,.., see Fig. 4.4. As can be estimated from Fig. 4.4, the common

destination of all the roots is the origin of the s-plane.
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Fig. 4.4 The trajectories of the dominant pair of roots of (4.10) with respect to the value

of n=n/T , detailed view of Fig. 4.5
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Fig. 4.5 The trajectories of the roots of (4.10) (that are closest to the s-plane origin) with
respect to the value of n=n/T



On the basis of the obtained root trajectories let us evaluate the dynamics of the first
order anisochronic model (4.6). The dynamics of the system is primarily non-oscillatory, at
first determined only by one real root. As this root is close to value s; =0.3 also the other real
root starts influencing the dynamics considerably. Obviously, the dynamics of the system are
determined by this pair of roots for all the values of 77 (for the stable dynamics, i.e., 7 <7/2).
As this pair approaches the stability boundary, the ratio of the magnitude of this pair and the
magnitude of the second closest pair to the s-plane origin is still close to 5. The dynamics of
model (4.6) with respect to 77 can be read from Fig. 4.4 where the values of magnitude of the
dominant couple of roots and their relative damping §:|,B|/ @ are shown. To conclude,
although model (4.6) is given only by a single first order functional differential equation, its
dynamics is rather analogous to the second or higher order delay free models (if the model
dead time is approximated by the input delay 7).

4.2.4 Low order anisochronic model with zeros

The dynamics of the introduced first order anisochronic models are determined by the
system poles only. Involving more delays in the numerator, which introduce the zeros into the
model dynamics, further extends the applicability of the first order anisochronic model. One
possible way of involving a zero-effect to the system dynamics consists in using the model

K(Ls+exp(—sy))exp(—sT)

G(s) = Ts +exp(—sn)

(4.11)

where the ratio ) /L determines the distribution of the roots of Ls+exp(—sy)=0 (the
positions of the zeros of (4.11)) in the same way as the ratio 7/T determines the distribution
of the poles, see Vyhlidal and Zitek, (2001). However, using (4.11) is effective only in case of
the requirement to involve the zeros that are located on the left half of the complex plane. If
the system is non-minimum phase system, model (4.11) cannot be used because the equation
Ls +exp(—sy) =0 does not have positive real roots for any /L. If the zero is positive real
and single given by u# =1/L, it can be added to the model simply by using — Ls +1 instead of
Ls +exp(—sy)) (using — Ls+exp(—sy) does not bring about considerable merits because its
dominant root is positive real for any ¥ >0). More difficult task is to involve the dominant
complex zeros with the positive real parts. Theoretically, it is possible to use the term
Ls +exp(—sy) but as |Re(,u)|/Im(,u) > 0.5 the ratio y/L becomes very large, which is not
convenient from the numerical point of view. Another problem arising from the use of model
(4.11) is that the degree of numerator is equal to the degree of denominator, i.e., there is a

direct input-output link in the model. To avoid such an inconvenient model structure, instead
of first order anisochronic model (4.11), the following second order model may be used

_ K(Ls+exp(—sy))exp(—sT)

G(s)
(Ty + D(T's + exp(=s7))

(4.12)

with an additional mode with time constant 75.

The alternative way of involving the zeros into the first order model that do not have the
drawback of the equal degrees of numerator and denominator consists in using the following
model with the numerator of the form of exponential polynomial



G(s) = K(l—aexp(—sy))exp(—s7) 4.13)
Ts+exp(—sn) '

The zeros of system (4.13) are the roots of the following equation
N(s)=1—aexp(-sy)=0 4.14)
If a>0, the real solution of the equation is given by
s =—l1n[lj (4.15)
X a

In fact, variable s is the complex variable, i.e., s = f+ j@, thus the roots are the solutions of
the equations

Re(N(s))=1—aexp(—yf)cos(yw)=0 (4.16)
Im(N(s)) = aexp(—xf)sin( yw) =0 4.17)

which result from splitting equation (4.14) into real and imaginary parts. Separating the
exponential term from (4.16)

1
exp(—fy) =———— (4.18)
acos(wy)
and substituting (4.18) into (4.17), the following expression results
tan(yw) =0 (4.19)
Since (4.19) is satisfied for @ =kn/y and the right-hand side of (4.18) has to be positive to
obtain real S, the roots s = S+ jw of (4.14) are given by

p=—Lmlt (4.20)
X |a
w=12kn/y, if a>0
k=0,1.2,... 4.21)

0=k +Dn/y, if a<0’

Thus, by means of a and ), we can assign the horizontal chain of the roots arbitrarily in the
complex plane. Prescribing the real parts of the roots £ yields (from (4.20))

la = exp(B) (4.22)

and the parameter } results from

_2n

Wy

(4.23)

where @, prescribe the spacing of the imaginary parts of the roots. If a is chosen positive,

equation (4.14) has one real root. The closest complex root (of the horizontal chain) to the real
one has imaginary part equal to @, . If a is chosen negative, equation (4.14) does not have a

real root. In this case, the roots of the chain closest to the real axis have the imaginary parts



equal to £ @, /2. To sum up if a >0, the roots are given as s = B and sy x4 =t jkay,).,
k=1,2,... and if a<0, the roots are given as S2k+1,2(k+1) = BEi((2k + l)a)p/2) ,k=0,1,... Thus,

by means of the difference equation, we can assign either one real dominant zero or the pair
of complex conjugate zeros. The procedure of assigning the zeros of a system will be shown
in the following example.

Example 4.2
Let us assign zeros u;,=1+j to a system using the numerator N(s)=1—aexp(—sy).

First of all, the delay y is to be computed from (4.23). Since the root of (4.14) is complex
conjugate, @, =2 thus ¥ =7 and according to (4.22) a=—exp(7). As can be seen in Fig.

4.6, the prescribed root has been obtained. The effect of changing the sign of a is shown in
Fig. 4.7. As can be seen, in agreement with (4.21), N(s) has one real root. Obviously, in case
of choosing one real root to be assigned, the spacing of the complex roots can be chosen by
the parameter y. Thus, assigning a real zero, the impact of the complex zeros of the chain on
the final dynamics can be reduced using smaller values of .
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Fig. 4.6 Roots of (4.14) for y = w and Fig. 4.7 Roots of (4.14) for y = w and
a=—exp(w), Re(N(s))=0-solid, a =exp(r), Re(N(s))=0-solid,

Im(N(s))=0-dashed Im(N(s))=0-dashed



Example 4.3

In Goodwin, et al., (2001), (Example 4.6, p. 80) the role of a real zero in the system
dynamics is demonstrated on the step response of the system

_ —s+pu
") = D05+ D (429

Let us compare the step responses of (4.24) with the step responses of the following system

G(s) = 1—aexp(—=sy)

- (4.25)
(1-a)(s+1)(0.5s+1)

which has the same values of the dominant zero as the values of the zero of (4.24)

0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
Fig. 4.8 Effect of different zero locations to the step responses of systems (4.24) (dashed) and
(4.25) (solid)

The result of the comparison of the step responses of (4.24) and (4.25) is seen in Fig. 4.8. The
delay in numerator of (4.25) is chosen y = 0.1 and the parameter a = exp(4}). As can be seen,
step responses of model (4.25) fit the responses of (4.24) quite well. The error of the
responses depends on the value of the parameter y. The smaller the delay parameter y is, the
responses are closer to each other (the more distant are the complex zeros of the chain).

To sum up, model (4.13) can be used as the approximation model of fairly broad class
of SISO systems. The motivation to find the universal model as simple as possible is due to
application of the model in control. Using, e.g., methods of inversion dynamics or internal
model control, the structure of the final controller is primarily given by the structure of the

plant model. Some aspects of using model (4.13) in internal model control will be discussed
in the following section.



4.3 Notes on anisochronic IMC design
4.3.1 Neutral character of closed loop system caused by IMC

It has already been mentioned that the method FSA may result in neutral character of
the closed loop system dynamics. In this chapter, I am going to show that also the model
based control design may give the same result if applied to TDS. In Zitek, (1998), Hlava,
(1988), Zitek and Hlava, (1988), Vyhlidal and Zitek, (2001), the features of internal model
control (IMC) design based on low order models with time delays are studied. The scheme of

IMC is shown in Fig. 4.9, where R*(s) is the

w + * u y
controller, P(s) denotes the dynamics of the plant — R(s) > P(s)
which is controlled and G(s) is the model of the plant. .
Using universal first order anisochronic model (4.13) > G(s)

and provided that the dynamics of the system being
approximated does not involve positive zero effect,
(the problem of systems with positive zeros will be
solved in section 4.3.2), the transfer function of the
controller is given by

Fig. 4.9 IMC scheme

R'(5)= —— F(s)= Is + exp(=s7)) (4.26)
Gi(s) K(1—aexp(—sy)(T¢s +exp(—sm;))
where G;(s)1s the invertible part of model (4.13) and F(s) is the first order anisochronic filter

with F(0)=1. The transfer function of the inner control loop (which is the controller transfer
function if the classical control loop is considered) is given by

R(s) = R (5) = If (s) _ Ts+exp(—sn) 4.27)
1-R ()G(s) K(l—aexp(=sx))(T¢s+exp(=sn;)—exp(=s7))
see its block diagram in Fig. 4.10
VL,{»l IK ++ 4 >
gain
a X
gain delay
7;
delay
7 <
delay
Fig. 4.10 Scheme of the controller (4.27)
If G(s)=P(s), the closed loop dynamics are given by the first order model
exp(—st
Gy () = —XP(SD) (4.28)

Ty s +exp(=s7y)



However, the model approximates only a part of the dynamics as a rule. Therefore, let us
study the closed loop dynamics for the case G(s)#P(s). Let the filter be F(s)=1/F;(s),
(Fy(s)=Trs+exp(=sng)), the approximative model G(s)=KN(s)/M(s)exp(—s7),
(N(s)=1—aexp(=sy), M(s)=(Ts+exp(—ns)) and the true plant model P(s)=Q(s)/S(s),
then the controller transfer function is given by

M (s)

R(s)= 4.29
O RN (o) —exp(—s7) @2

and the transfer function of the closed loop is the following

M ()Q(s)
S()KN (s)(Fy (s) —exp(=s 7)) + M (s)Q(s)

Gy (s) = (4.30)

Thanks to N(s), obviously, there are delayed terms of the highest derivative of y(¢) in the
model of the closed loop. Thus the closed loop is of the neutral system dynamics. The features
of the IMC design and the application of the mapping based rootfinder in analysis of the
system spectra will be shown in the following example.

Example 4.4
Consider the plant described by the model

P(sy=—205F1 4.31)

T (2s+D1O

with the multiple pole 4; ;o =—0.5 and the single zero u =-0.05. Let us find the parameters
of model (4.13) that will approximate model (4.31) in the low frequency range. Assessing
7=8 and =10, which implies a=0.607 (according to (4.20), F=-0.05) and
K=1/(1-a)=2.54, the system dead time and the rising part of the response are approximated
quite well, see Fig. 4.11.

0 10 20 30 40 501‘ 60 70 80 90 1C -2 -15 -1 _0'5Re 0 0:5 1 1.5
Fig. 4.11 Step responses of system (4.31) Fig. 4.12 Frequency responses of system
(dashed) and of its approximation (4.13) (solid)  (4.31) (dashed) and of its approximation

(4.13) (solid)



The remaining two parameters of model (4.13), i.e., T =13.1 and 77=35.5, have been assessed
using least square method to approximate two points of the frequency response of (4.31).
Since model (4.13) is supposed to approximate model (4.31) in the low frequency range, the
points of the frequency response being approximated have been chosen those with
P(wy) =arg(P(jay)) =—-n/2 and ®(w,)=arg(P(j®,))=—=n. As can be seen in Fig. 4.12, the
frequency response of model (4.13) approximates frequency response of (4.31) very well
(even in the fourth quadrant of the frequency response). Also the approximation of the system
step response is very good considering the anisochronic model (4.13) is of the first order.

Let us use the given parameters of model (4.13) in controller (4.27) and let us
investigate the dynamics of the closed loop. Closed loop system is of the 11" order with
transfer function (4.30). Choosing 7y =10 and 7y =7 the closed loop dynamics are supposed

to be given by the dominant couple of poles 11’2 =-0.081%£0.156j (with relative damping

£ =0.51, see Fig. 4.4). Using the quasipolynomial mapping based rootfinder, the poles of the

closed loop system can be computed as the roots of the denominator of the closed loop with
the transfer function given by (4.30), see Fig. 4.13.

2.5

21 08 -06 -04  -02 0 0.2
Re(s)

Fig. 4.13 Poles of the closed loop system with plant model (4.31) and controller (4.27),
Re(M(s))=0-solid, Im(M(s))=0-dashed, M(s)-characteristic
function of the closed loop system

As can be seen in Fig. 4.13, the following poles A4 =-0.05, A4,3=-0.081+0.176]
and A4 s =-0.126+0.089;j are likely to be dominant (considering the value of the magnitude
of the poles as the evaluating criterion). The poles of the couple 4, 3 are quite close to the
prescribed poles /Tl,z- However, from the distribution of the other dominant poles, it is not

obvious that the poles 4, 3 determine the dynamics of the closed loop (4; is even closer to



the origin of the s-plane). As has been mentioned, the dynamics of the system are not only
determined by the system poles, but also by the system zeros. Thus, let us find the zeros of the
closed loop system. Since the closed loop is neutral system we will analyse the spectrum of
difference equation as well. The essential spectrum of the system is obviously given by the
solutions of equation (4.14). The spectra of poles (black circles), zeros (empty circles) and
roots of the difference equation (asterisks) corresponding to the closed loop system with
chosen 7y =10 and 7; =7 are shown in Fig. 4.16. As can be seen the pole /;is likely to be

compensated by the real zero. Also the couple of poles A4 5 are quite close to a couple of

zeros and is also partly compensated. Consequently, the dominant mode of the set point
response is really given by the couple of poles 4, 3 (see Fig. 4.16, the poles of the prescribed

anisochronic dynamics are marked by squares). The dominant role of the couple 4, 3 in the

set-point response dynamics of the closed loop is confirmed by the responses of the real
closed loop system (4.30) and ideal closed loop system (4.28) seen in Fig. 4.17. As can be
seen, the real set point response (solid) is very close to the ideal one (dashed). The
characteristic feature of the class of neutral systems, i.e., some of the poles converge to the
roots of the difference equation, can be seen in Fig. 4.16 and in the enlarged region in Fig.
4.20.

Thus, using the difference equation of form (4.14) to approximate the system dominant
zero implies that the closed loop system has infinitely many poles with real parts close to the
value given by (4.20). Therefore, controller (4.27) cannot be used to control systems with
zeros in the right half of the complex plane. On the other hand, if the dominant zero is
negative and not too close to the imaginary axis, the neutral character of the closed loop
system does not bring about any risky features to its dynamics. Provided that closed loop
system (4.30) (with negative dominant zero) does not have any unstable poles close to the
s-plane origin, it does not have any unstable poles at all. It is given by the fact that the chain
of the poles converging to the spectrum of difference equation has the tendency of getting
closer to the eigenvalues of the essential spectrum as the magnitudes of the poles in the chain
increase.

In order to demonstrate that the dynamics of the closed loop are really determined by
the parameters 7; and 7);let us choose different settings of these parameters. Firstly, let

T; =10 and 7 =0 corresponding to the dominant pole /T] =-0.1. The poles of real closed
loop system that are closest to this prescribed dominant pole Z] are A 3 =-0.108+0.026;,

see Fig. 4.14. As can be seen from the set point responses in Fig. 4.15, the dominant modes of
the dynamics are again determined by the couple A, 3. However, even though the set point

responses in Fig. 4.15 are very similar, it can be seen that there is a weakly damped parasite
mode in the real response. Obviously, this mode corresponds to the couple
46,7 =-0.051£0.639j,(compare the position of A4 with the closest eigenvalue of the essential

spectrum.
As the third setting of the parameters determining the closed loop dynamics, let us
choose Ty =10 and 7y =107/2 which implies /T]’z =10.1j. The corresponding spectra can be

seen in Fig. 4.18 and the set-point responses in Fig. 4.19. As can be seen, some of the poles of
real closed loop (4.30) (not only the dominant ones) are even closer to the poles of the ideal
closed loop (4.28) than in the previous cases. As can be seen, the real closed system is not

unstable because the dominant couple of poles 4, 3 =-0.002%0.1jare located slightly to the
left from the imaginary axis.



Caption 4.1 Spectra and set point responses of closed loop system (4.30) consisting of for
different settings of prescribed dynamics to the ideal closed loop system (4.28). Spectra: black
circles - poles of (4.30), empty circles - zeros of (4.30), asterisks - roots of N(s),
squares - poles of system (4.28) (ideal closed loop). Set point responses: solid - system (4.30),
dashed - system (4.28)
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On the basis of good results achieved by using the first order anisochronic model with
difference part in the numerator to approximate the higher order models with single real zero,
one could suppose that using the difference equation

m m
N(s) =] [(-aexp(=sx)) =1- a; exp(=sZ;) (4.32)
i=1 i=1

allows more zeros of the system to be 20 ¢ s . . ;
approximated. However, using this way for : o i
approximating more than one zero, 18- - O ..... = * ]
the features of spectra of exponential O o . : : i
polynomials have to be taken into 16 - O .8 e %]
consideration (Avellar and Hale, 1980). Even o B : : i
if all the roots of (4.32) are located in the left alb f_O R . B T
half of the complex plane, the positions of the : - -0, : f f i
roots may be very sensitive even to small ~ ° *:
variations in the delays (if the delays are 12| [ i |
rationally dependent). However, if the — o e 3
following condition is satisfied g 100 o Z DU i """

m ol e X

> | <1 (4.33) S *

ol oo o
the equation N(s)=0 does not have any éo éDI; . i
solutions in the right half of the complex Ab g a i .
plane, see, e.g., Avellar and Hale, (1980) and : : g e *:
there is no danger of loosing the stability if ol S L _Q_}_ g e i ______
the delays in (4.32) change slightly. The risk : } O e *:
of using (4.32) will be demonstrated in the 0 i e ® | ° ;m%;
following example. -1 -0.8 -06 -04 -02 0 0.2

Re(s)

Examg:)en:i.jer the plant described by the Fig. 4.20 Spectra of closed loop system for
model T; =10 and 7 =7, see Caption 4.1

P(s) = (20s + 1)(1(:.(9)+ 1)) (4.34)

2s+1)

with two single zeros ; =-0.05 and u, =—0.1. The parameters of the first order model with
N(s)=1—a;exp(=%;s)—adrexp(—=},s) and M(s)=Ts+exp(-ns), x=7.5, a =0.687,
a,=0472, (a=a+a,=1159, ay=-aqa,=-0324, xi=x=75, },=2x=15),
t=5.5, K=6.06, T=13.3 and 7=6.5 have been obtained in the same way as in

Example 4.4. As can be seen in Fig. 4.21 and 4.22, the first order functional model
approximates the characteristics of model (4.34) quite well. Using the parameters of the first

order filter for IMC controller (4.29) T; =10 and 7, =7 (/T]’z =-0.081£0.156j) the results
shown in Fig 4.23 and Fig. 4.24 are obtained.

As can be seen in Fig. 4.23, two of the dominant poles are likely to be compensated by
the zeros. Thus the dominant part of the dynamics are given by the couple of poles



A3 =-0.078+0.102] that are quite close to the prescribed couple 11’2 . Regarding the lower

imaginary part of 4,3 (comparing to 11’2 ), it may be assumed that the responses of the real

closed loop system are likely to be more damped than the responses of the ideal closed loop.
This feature is seen in Fig. 4.24, where the set-point responses of the real and ideal closed
loops can be seen. Besides the set-point response is more damped, a parasite oscillatory mode
is involved in the closed loop dynamics given by the couple of poles Ag 7 =-0.048+0.858;

(corresponding to a couple of the essential spectrum).
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Fig. 4.21 Step responses of system (4.34) Fig. 4.22 Frequency responses of system
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Fig. 4.23 Spectra of closed loop system for ~ Fig. 4.24 Set-point responses of real (dashed)
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In Fig. 4.25, the spectra of the closed loop system are shown in the enlarged region. As in the
case of the system with one zero, the chains of the roots of N(s) are also parallel with the
imaginary axis. However, if one of the delays in (4.32) changes so that the delays are not
rationally dependent the character of the essential spectrum considerably changes. Since
(4.33) is not satisfied, there are infinitely many poles crossing the stability boundary if one of
the delays changes. The deflection of the essential spectrum caused by the change
7> =2%;+0.1 are shown in Fig. 4.26. As can be seen, such a change of one of the delays



deflects the essential spectrum and some of the roots of (4.32) (in fact infinitely many) enter
the right half of the complex plane. The character of the spectra can be seen in Fig. 4.29.
Obviously, the instability of the closed loop is given by the part of the controller 1/N(s), see
(4.30). Therefore let us show the character of the instability caused by such a small change in
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Fig. 4.25 Spectra of closed loop system, Fig. 4.26 Spectra of closed loop system,
rationally dependent delays of difference rationally independent delays of difference

equation, ( 7> =2%; ), see Caption 4.1 equation, ( 7> =2%;+0.1), see Caption 4.1
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Fig. 4.27 Step response of 1/N(s), rationally ~ Fig. 4.28 Step response of 1/N(s), rationally

dependent delays, 7, =2%;, see (4.32)  independent delays, 7, =2%;+0.1, see (4.32)



the delays. In Fig. 4.27 and Fig 4.28 we can see the step responses of the transfer function
given by 1/N(s). In Fig. 4.27, the delays are rationally dependent, 7, =2%; and in Fig. 4.28,

the delays are not rationally dependent, ), =2%;+0.1. The character of the responses is

quite similar. The response of 1/N(s) with ¥, =2%; + 0.1 differs from the former one only in

the beginning of each of the steps. However these impulse-like discrepancies have increasing

amplitude responsible for loosing the stability of the closed loop.

30083 ! ! !

° . .
L)

250 S8

[ 4
200 - -

o._..
100 - - !.-f-

e %Y
50 3

. 0 0.2
Rm(s)
Fig. 4.29 Spectrum of the poles of closed loop system with rationally independent delays in
N(s), (7o =27, +0.1), see (4.32)

4.3.2 Robust anisochronic IMC control design based on first order anisochronic model

According to the results obtained in the previous section, IMC anisochronic controller
(4.29) is suitable only if the coefficients of N(s) satisfy condition (4.33). We could also
observe that the essential spectrum given by the solutions of N(s)=0 may bring the undesirable
oscillatory modes to the closed loop dynamics if the spectrum is too close to the stability
boundary. In the classical IMC design, see Morari and Zafiriou, (1989), Skogestad, et. al.,
(1996), the uninvertible part of the delay free system (which is in not involved in the



controller) is given by the non-minimal phase factor as a rule. Thus, analogously to that case,
let us factorise N(s) into Ny(s)N,(s), from which only Nj(s) will be involved in the

inverted part of the transfer function. The spectrum of
Ny(s)= Hi] (1 —a; exp(—s;(,-)): 1- Zi] a;exp(—sJ;) has to be free of the roots located in

the right half of the complex plane, i.e.,

a,-| <1 and also the following condition has to be

- d |~ . . .-
satisfied Zi—l |al-|<1, which guaranties the strong stability of the spectrum. Thus the

controller of the loop seen in Fig. 4.9 is of the form

* M (s)
R — 4.35
© KN, N4 ($)F; () ( :

where N, = N, (s),s — 0 and the controller of the classical control loop acquires the form

R(s) = _ M(s) (4.36)
KN4(N, F; (s)— N, (s)exp(—sT))

The closed loop transfer function is given by

N, (s)exp(—s7T)

= - 4.
G =TNR© @
in case that G(s)=P(s). If G(s)#P(s), the closed loop is given by
Gy (s) = M(5)0(s) (4.38)

S(s)KN4(s)(N, F; (s)— N, (s)exp(—s7)) + M (5)Q(s)

As can be seen in (4.37), the zeros of N, (s) become the zeros of the closed loop dynamics.
The application of the method will be shown in the following example

Example 4.6
Let us use IMC controller (4.36) to control the system

(205 +1)(10s +1)(=5s +1)
(2s +1)1°

P(s) (4.39)

with three zeros gy =-0.05, 1, =-0.1 and u3=0.2. Let us consider the parameters of the
first order anisochronic model

[T, 0-arexp=szK exp(=s7)
Ts+exp(—sn)

G(s)= (4.40)

as follows T=11.94, 7=4.67, =3, y1=4>=75, 73=55 a; =0.687, a,=0472,

a3 =3.004 and K =-3.02. The comparison of the step and frequency responses of models

(4.39) and (4.40) can be seen in Fig. 4.30 and Fig. 4.31, respectively. As can be seen in
Fig. 4.30, the step response of first order model (4.40) approximate the response of high order
model (4.39) quite well. Also the approximation of the frequency response in the low
frequency range is very good.
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Fig. 4.30 Step responses of system (4.39)
(dashed) and of its anisochronic first order
approximation (4.40) (solid)

Fig. 4.31 Frequency responses of system
(4.39) (dashed) and of its anisochronic first
order approximation (4.40) (solid)
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Fig. 4.32 Spectra of closed loop system for

Fig. 4.33 Set-point responses of real (solid)
Ty =10 and 77y =7, see Caption 4.1 and ideal (dashed) closed loop systems
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First step of the robust IMC design consists in the factorisation of N(s). Since az >1
and since |G| +|d,| =148 (G = a; +a, =1.159, @, = —aja, =—0.324) condition (4.33) is not

satisfied for Hiz:](]_ai exp(—sy;)), the function N(s) may be factorised into

Ny(s)=1-a,exp(—=syx;) (i, i1s more distant from the stability boundary than g, thus the
control loop is likely to be more robust) and N, (s)=(1—a,exp(=sx>))(1—azexp(—sy3)).
Using controller (4.36) with the optional parameters 7; =10 and 7y =7 the spectra of the
closed loop dynamics and the set-point responses can be seen in Fig. 4.32 and Fig. 4.33,
respectively. As can be seen in Fig. 4.32, the couple of dominant poles /Tl,z =-0.081%£0.156j
are not so far from the prescribed dominant couple 4,3 =-0.06+0.198;j, which implies that
the set-point response of the closed loop is quite close to the ideal response. However, the step
response involves a parasite oscillatory mode corresponding to the pole
A0.11 =-0.027£0.877j. Assigning slower closed loop dynamics by choosing 7y =20 and
ne =14 (/Tl,z =-0.040%0.0782j), the pole Ajy;; gets more to the left which enhance the

robustness of the closed loop, see Fig. 4.34. The set-point response is also much closer to the
ideal response. As can be seen in the spectra in Fig. 4.32 and Fig. 4.34 the zero of Ny(s)is

compensated by the pole 4;. However, other two dominant real zeros corresponding to the
solutions of N, (s)=0 are not compensated and their contributions to the closed loop
dynamics are seen in Fig. 4.33 and Fig. 4.35 (compare with Fig. 4.30).

4.3.3 A note on IMC design for higher order TDS

Let us consider SISO retarded system given by the matrices

ap(s)  aja(s) -+ ap,(s) by exp(—s7y) 3
Als) = 02,1:(S) az,zz(S) a2,:n(S) B(s)= b, expf—srz) C- c:2 441
an,l(s) an,2(s) o an,n(s) bn exp(_STn) Ch

Transforming the system into input-output transfer function, the term of the highest derivative
of the quasipolynomial in the numerator is given by

0, ()= bycy exp(=s7y) (4.42)
k=1

(Since this result is not the substantial according to the objectives of this thesis, the derivation
of (4.42) is omitted). Thus, performing the dynamics inversion of the system with matrices
(4.41) we obtain the neutral character of the closed loop if at least one of the couples satisfy
bic, #0, and 7, >0, k=1,..,n. Therefore, in IMC design applied to TDS, it is necessary to
analyze the spectrum of the system difference equation and to remove the risky parts from the
part of the transfer function being inverted.



4.4 Evaluation of the significance of the poles of TDS
4.4.1 Heaviside series based expansion of dynamics of TDS

In Examples 4.4, 4.5 and 4.6, the significance of the poles has been evaluated with
respect to their distances from the s-plane origin. Besides such a pole significance evaluation,
e.g., Goodwin, (2001), considered as dominant poles those that are closer to the stability
boundary than the rest of the poles. Such an evaluation is reasonable if the problem to be
solved is the stability issue. Anyway, it is difficult to claim whether the distance from the
origin or the distance from the imaginary axis is more important in determining the pole
significance. In this section, according to the third objective of the thesis, I am going to
introduce an original method for evaluating pole significance based on the analysis of the
modes of TDS.

Due to the generalized Heaviside series expansion, see, e.g., Angot, (1952), the function
g(#) with the Laplace transform

N(s)

Y=

(4.43)

where the functions N(s) and M(s) are the analytic functions and N(s)/M(s) has only single
poles the number of which may be both finite and infinite. Provided that the ratio does not
have any singularities besides the poles, g(¢) can be expanded into the series

gt = Z e xp(A;1) = ZR(ﬂ)exp(ﬂ ) (4.44)
=0
which implies
N 1 R(/i)
H, 4.45
Gls)= ZM%) Z , Z () (4.45)

where A,i=1.c0 are the poles of the function N(s)/M(s) and R(s)=N(s)/M’(s),
M’(s)=dM (s)/ds.

4.4.2 Evaluation of the significance of the poles in the infinite spectrum
In Zitek and Vyhlidal, (2002a,b), we have suggested evaluating the significance of the
poles on the basis of the absolute value of the residues |R(/1,-)|. Due to (4.44) the values of the

residues determine weight factors of the contribution of the modes to the system dynamics.
Obviously, applying such an evaluation is reasonable only in case of real poles. However, the

reason of using |R(4;)| for evaluation of the complex 4; is not obvious. The oscillatory modes
are not given by the single complex poles A; but by the complex conjugate pairs
A iv1 =B £ jo,. The residues corresponding to 4; ;. are also complex conjugate pairs,

given by R(4; ;1) = Br; £ jog; and their roles in the modes are not so clear. In order to

prove or disprove using |R(/1,-)| to evaluate the significance of 4, let us investigate the

features of the system modes. Considering that G(s) is a time delay system (input lumped
delay is not involved, it is considered as the separated part of the dynamics not influencing the
pole significance, see section 5.2) thus the functions N(s) and M(s) are quasipolynomials of
form (1.45). According to (4.45), such an infinite dimensional system G(s) may be expanded
into the sum of infinite number of the first order transfer functions given by



R(4;)

H. =
l(S) S—ﬂ/l'

(4.46)

However, function (4.46) fully describes only the modes corresponding to the real poles. If
A;is complex, the mode is oscillatory and its transfer function is of the second order given by

R(A)(s = Aiy) + R (s = 4) _ 28RS = BribBi — @R, @)
(s—A)(s— Ay s2 =285+ B? +w?

H;iy(s)= (4.47)

where A;,; denotes here the complex conjugate pole to A . The static gain coefficient of
transfer function (4.47) is given by H; ;.1(0) ==2(fg;f; + wg,;0;)/( ,b’,- +w; 2). The dynamics
of the transfer function (4.47) is not only determined by the couple of poles 4; ;. , but also by

the single zero iy, = fB; + (wg;/ Br;)@; . Performing the inverse Laplace transform to transfer
functions (4.46) and (4.47), respectively, we obtain the weighting functions of the modes

hi (f) = R(ﬂl)exp(ﬂlt) (448)
if A; are real poles and
hi i1(1) = 2( BR s exp( fit) cos(@;t) — g ; exp( Bit) sin(@jt)) (4.49)

if 4; ;11 are complex conjugate pairs of poles, respectively. If the poles A; are real, the
residue values R(4;) are the global extrema of the weighting functions 7#;(¢) for > 0. Since
function (4.48) is monotonous and A;(ec) =0 are the other global extrema of A;(¢) for t >0,

the differences between the maxima and minima of the weighting functions

he; = ’h,- ’ are equal to the absolute values of the residues, ie., h,; = |R(/1,-)|. This

max ~ Pimin
fact support using |R(/1,-)| to evaluate the significance of the real poles. Since, presumably, the
higher the value of A, :’R(/li,m )’ is, the more significant the contribution of a particular
weighting function /;(¢) to the weighting function of the whole system g(#) is. On the other
hand, such an evaluation of the significance of the complex poles using ’R(/i,-,m )’ is not
justified by an analogous role of ’R(/i,-,m )’ in the weighting functions h; ;,(¢) . However, the

difference between the maximum and minimum of the weighting function
he; =’h,- t20, is not difficult to obtain even for (4.49). Evaluating the first

derivation of (4.49) equal to zero, the extrema of the oscillatory weighting function (4.49)
occur at time ¢ given by the solutions of the following equation

ﬁRlﬁl le
,BRiwi +wRi,Bi

max _himin ’

tan(w;t) = (4.50)
1.€e., 1=t +7n/w, k=0,1, 2, ..., (feo >0 is the solution of (4.50) that is the closest one to

t = 0). Considering the oscillatory mode being analysed is stable, the extrema have decreasing
tendency as ¢ increases. Thus, the significance evaluating criterion 4, is defined as



max

hei :’hl' hl'min’
he; =|R(A)| if A; is real (4.51)
ey = max{ |15 0) — iyt [ (teg) Iy ep)| }if A, is complex

2

In the following example, the comparison of the evaluation criteria will be performed.

Example 4.7

Consider the closed loop system from Example 4.4 given by (4.30) with the setting
T =10 and 7y =7, i.e.,

G(s) = (Ts + exp(=7s))Q(s)
S(s)K(1—aexp(=sy))T;s +exp(—sng ) —exp(—s7)) + Ts +exp(—ns)Q(s)

(4.52)

Let us expand the transfer function of the system into the generalized Heaviside series and let
us investigate the roles of the modes in the system dynamics. In Tab. 4.1, we can see the

values of the poles A;of system (4.52) ordered with respect to the values of |R(/1,- )|. The
R(4;)

of he; are also seen in Tab. 4.1 (the dynamics of some modes, e.g., those of Hj,(s) or

values of the residues R(4;),

, the zeros yy; of transfer functions (4.47) and the values

Hyg(s) are considerably influenced by their zeros since ’,uH i’/|/1,-|< 1, which indicates the

dominance of the zeros.) Evaluating the values of both |R(/1,- )| and hg; shows that the break
point values of both the criteria are obviously the values for i = 15. Both the criteria decrease
significantly as i changes from 15 to 16. According to that point, presumably, the dynamics of
system (4.52) are determined by the poles A;, i = 1..15. In order to confirm the assumption,
let us investigate the character of the modes. In Fig. 4.37 - Fig. 4.44, we can see the step and
impulse responses of the transfer functions H;(s) (weighting functions) for i =1..15 and in
Fig 4.45 the responses of the systems corresponding to expansion (4.45) for the maximum
i =2..15. Obviously, the most significant modes are those corresponding to the poles 4; ; and
A3 4. As can be seen in Fig. 4.45, the step response of the system Hj,(s)+Hj4(s)
approximates the basic features of the original system, i.e., the dead time and the oscillatory
character. Increasing i gradually, ie., involving i transfer functions H;(s) in the system
approximation, the step responses of the approximation get closer to the step response of the
system G(s). Finally, as i = 15, the approximation is so good that its approximation error is

not seen in Fig. 4.45 and its step response seems to be identical with the response of (4.52).
The approximation error can be seen in the very detailed view in Fig. 4.46. According to the
step responses shown in Fig. 4.45 and Fig.4.46, all the substantial modes of the TDS are
approximated by means of the finite order approximation (4.45) with maximum i =15,
(considering the ordering in Tab. 4.1). As can be seen in Tab. 4.1, there are only small

differences in the evaluation of the pole significance using the criteria [R(4; )| and hg; . On the

basis of such a result, it might be concluded that using the criterion |R(/1,- )| is sufficient and

the evaluation of the weighting functions is not necessary. However, as will be shown later,
evaluation using |R(/1,- )| fails if there are poles considerably close to each other in the system

pole spectrum.



Tab. 4.1 The poles of system (4.52) and the values of their significance evaluating criteria

) |,UH1'|
i A Hri | g R(4) [R(A)| fe;
1 [-0.081+0.176j [-0.043 | 0.219 | (-1.379-0.299j) 10T | 1.411 10" [3.575 10
3 1-0.128 +0.089j | -0.171 | 1.099 | (6.661 - 3.241j) 10° | 7.408 107 |1.351 10
5 [-0.516 +0.352j | -1.111 | 1.780 | (1.749 - 2.960j) 10° | 3.438 107 | 3.559 107
7 -0.321 +0.472j | -2.284 | 4.003 | (0.715-2.976j) 10° | 3.061 102 | 3.430 107
9 [-0.656 +0.242j | -0.876 | 1.252 | (1.812-1.642j) 10° | 2.445107 | 3.625 107
11 -0.730 +0.124j | -0.779 | 1.051 | (1.943-0.755j)) 10* | 2.084 10" | 3.885 107
13 |-0.754 1.986 10 1.986 10 | 1.986 10
14 |-0.049 + 0.636j | 6.058 | 9.490 | (-0.785 - 7.528j) 10° | 7.569 10 | 2.379 10*
16 [-0.050 + 1.257j | -5.408 | 4.300 | (-1.776 +7.574j) 10° | 7.779 10° | 2.779 10™
18 |-0.315 + 1.252j | -0.593 | 0.459 | (-9.372 +2.079j) 10® | 9.599 10° | 2.725 107
20 [-0.050 + 1.885j | 2.456 | 1.303 | (1.584 +2.106j) 10° | 2.63510° | 9.544 10°
22 -0.050 -1.081 10° 1.08110° | 1.081 10°
23 [-0.331 +2.086j | 8.837 | 4.184 | (-0.269 - 1.179)) 107 | 1.209 107 | 2.960 107
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Fig. 4.36 Poles (black circles) and zeros (empty circles) of the system given by (4.52). The

poles are ordered with respect to |R(/1,-)

, see Tab. 4.1




Caption 4.2 The step responses y;(f) - solid, and the weighting functions /#;(¢) - dashed, of
the transfer functions H;(s) given by (4.46) and (4.47) respectively. The impulse responses

have different scales in order to show both the step and the impulse responses in one figure.
The scale factor (s.f.) is seen in the captions of the figures.
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Fig. 4.37 Responses (s.f.=5) of H;(s), Fig. 4.38 Responses (s.f.=5) of H34(s),
Ap =-0.0811£0.176j, see Caption 4.2 A3 4 =-0.128£0.089j, see Caption 4.2
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Fig. 4.39 Responses (s.f.=3) of Hs¢(s), Fig. 4.40 Responses (s.f.=3) of H73(s),
As.6 =—0.516£0.352j, see Caption 4.2 A78=-0.3211£0.472], see Caption 4.2
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Fig. 4.41 Responses (s.f.=2) of Ho 1¢(s), Fig. 4.42 Responses (s.f.=2) of Hyy 12(s),

A910 =—0.081£0.176], see Caption 4.2 A1.12 =-0.730£0.124], see Caption 4.2
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Fig. 4.45 Comparison of the step response of G(s) given by (4.52) (TDS) with the step
responses of the systems given by the sums of the first 7 transfer functions H;(s) of
expansion (4.45)
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4.4.3 Poles close to each other

In order to demonstrate the problem of evaluating the significance of the poles that are
close to each other using the criterion |R(/1,-) , let us solve the problem for the simplest TDS

G(s)= _ (4.53)

s+ exp(-7s)
As can be seen in Fig. 4.4 and Fig. 4.5, the system has two real distinct poles for 7 <exp(—1).
Starting from 7=0, as 7 increases, the mutual distance of the poles decreases. For
n=exp(-1) the poles have the same position 4; , =—exp(1). If the delay 7 further increases,

the poles become complex conjugate pair. In Fig. 4.47, the criteria |R(/1,-)| and h,; evaluated
for both real poles of system (4.53) for 7€ [0.01, /2] are seen. If the poles are real,
hey = |RCA)|> her = R, (|| > |4

the pole significance on the basis of the distances of the poles from the imaginary axis (the
closer the pole, the more significant). However, as can be seen in Fig. 4.47 if the poles are

), which is in agreement with the method of evaluating

, i=1,2, increase rapidly, both asymptoting to

[R(Ay2))| =0 . As

getting close to each other, the values of |R(/1,-)

the horizontal line drawn at 77 =exp(—1) with the limit values lim,_,qc 1

can be seen in Tab. 4.2 and Tab. 4.3, the values of both the criteria corresponding to 4; and
A, increase considerably as 77 changes from 0.1 (Tab. 4.2) to 0.367 (Tab. 4.3), while the
values of the criteria corresponding to A3 4 and A5 ¢ change only slightly. Thus, according to

the criteria |R(4;)| and A, , the significance of the roots depends on the mutual distance of the
poles, which is not obviously true. However, as can be seen in Tab. 4.3, the residues |R(/11)|
and |R(/12)| have the opposite signs and the absolute value of their sum |R(/11)+ R(ﬂg)| =0.66
is comparable with the values of |R(/11 )| and |R(/12)| in Tab. 4.2. According to this result, one

could suggest evaluating the significance of the poles that are close to each other using
|R(/11)+R(/12)| instead of evaluating each pole separately using |R(/11)| and |R(/12)|. In
Fig. 447, we can also see the characteristic |R(/11)+R(/12)| that continues as
|R(/11) + R(/QQ)| =Re(2R(4;,)) as the poles become complex conjugate pair. If the complex
pair has considerably small imaginary part, i.e., the poles are close to each other, the absolute
value of ’R(ﬂl,z)’ is very large as well. As it is seen in Fig. 4.47, 2Re(R(4;,)) keeps low

values even for 7 —exp(—1),. Thus, consequently, R(/il,z)’ is large as 77— exp(—1),
because of the large imaginary parts of R(4; ;). Regarding the results achieved, using
Re(2R(4;5)) to evaluate the significance of the complex conjugate poles seems to be better
than to evaluate the significance using ’R(ﬂl,z)’. However, neither the criterion
Re(2R(4; ;11)) can be used to evaluate truly the significance of the complex poles since also

the imaginary parts of R(4;;;) may influence considerably the dynamics of the modes

corresponding to the complex conjugates poles .
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Fig. 4.47 The evaluating criteria of the significance of the dominant couple of poles of
system (4.53)

Caption 4.3 The values of evaluating criteria applied to the most significant poles of (4.53)

with different values of 7
Tab 4.2 7=0.1, see Caption 4.3

i A RCA)| | he;
1 |-1.12 1.12 1.12
2 |-35.77 1-0.391 10.39
3 |-44.49 +73.07; | 0.12 0.19
5 [-49.88 +137.9; | 0.07 0.12
Tab. 4.4 7=0.368, see Caption 4.3
i A RCA)| | he;
1 |-2.72 +0.07j 39.06 1.03
3 1-8.39 +20.28; |0.13 0.20
5 (-9.96 +37.713 |0.07 0.13

Tab 4.3 7=0.367 , see Caption 4.3

i 4 RCA)| | e
1 [-2.54 1479 |14.79
2 1-2.92 -14.131 |14.13
3 (-8.42+2033j | 0.13  ]0.20
51-999+37.82 |007 |0.13
Tab. 4.5 n=1, see Caption 4.3
i 4 RCA)| | e
1[-032+1.34) |067 [1.55
3 (-2.06+7.59] | 0.13 |0.24
5 1-2.65+13.95 |0.07 |0.16

Much better results in evaluating the significance of two poles close to each other are
achieved by evaluating the difference between the maximum and minimum of the weighting
functions of the modes, i.e., the criterion A, given by (4.51). In Tab. 4.3 we can see that /g,

and A, are also much higher than /., , and A .. However, if we evaluate the weighting

function of H,(s)+ H,(s) instead of evaluating the modes separately, we obtain the

reasonable result he] , =1 .03, see also Tab. 4.4. In Fig. 4.47, we can see, that primarily, when



A, is much farther from the imaginary axis than 4, i.e., 4 is the dominant pole, h,, , holds

the value of A, . If the values of A, and #,., increase because the poles get close to each

other, Ay, holds almost constant value. Obviously, this is in the agreement with the true

significance of the couple in the system dynamics. Even though the pole 4; moves to the left
as 7 increases, i.e., its significance decreases, the pole 4, moves to the right, i.e., its
significance increases. As can be seen, the significance of the couple keeps almost a constant
level up to the value 7 =exp(—1). After the dominant couple of the poles becomes complex

conjugate and 77 — /2, the value h; , given by (4.51) increases. It confirms the reliability

of the evaluating criterion A,; because as 77 — n/2 the dominant couple gets very close to the
imaginary axis (as well as to the s-plane origin) and its significance increases, see Tab. 4.5.

To sum up, the evaluation of the significance of the poles using criterion (4.51) seems to
be a very valuable tool in the process of selecting the group of the dynamics determining
poles. The advantage of the method consists in the possibility to evaluate the significance of a
group of poles, which is performed by locating the global extrema of the weighting function

of Zf:a H;(s). This feature is especially convenient in case of evaluating the group of close

poles, for which the values of A, e a..b, are unreasonably large, as a rule.

4.4.4 Multiple poles

Since the Heaviside expansion can be applied only to the modes of the dynamics
corresponding to the single poles, the evaluation of the significance of the multiple poles is
not an easy task to work out. In case of classical systems with the polynomial numerator and
denominator, the transfer function G(s) is expanded into the partial fractions using the simple
evaluation of the coefficients corresponding to the particular powers of s, see Angot, (1952).
Having a multiple pole A with the multiplicity », the modes corresponding to this pole are of
the form

L_l[ A, A22+ A et A ]=
s=A (s=A7 (-4 (-A" (4.54)

= A exp(—At) + Astexp(—At) + %tz exp(—At)...+ s exp(—At)

A
(n—=1)!

As can be seen, the modes are of quite complicated forms which makes the pole significance
evaluation even more difficult. Anyway, such a method based on evaluating the powers of s
cannot be directly used for TDS since the denominator of the transfer function is
quasipolynomial in which the powers of s are not multiplied by the coefficients but by the
more complicated terms (exponential functions).

The solution of the problem I am going to propose is based on the fact that from the
physical point of view the contribution of the multiple pole with the multiplicity n to the
system dynamics is more or less equivalent to the contribution of the group of n single poles
located in the vicinity of the position of the multiple pole. In the previous chapter I have
shown how to evaluate the significance of such a group of single poles with small mutual
distances. Using such an evaluation, the idea of evaluating the multiple poles is as follows.
Firstly, let the multiple pole of the multiplicity n be compensated by a multiple zero with the
same multiplicity and of the same value as the multiple pole. Secondly, let the multiple pole
be substituted by a group of n single poles located close to the value of the multiple pole.



Finally, let the significance of the group of n single poles be evaluated using the criterion
based on evaluating the weighting function of the system of transfer functions Z?:an H;(s),
where H;(s) are the transfer functions of the modes corresponding to the introduced single
poles. To figure out this idea, the multiple pole A4,,is to be compensated in the system transfer
function and replaced by the modes corresponding to A;; =4, +&, & #€;, i=12.n,
j=12.n,i+# j,thus

N(s) NG)(s—A,)"
MG m[T 5= A0

where n is the multiplicity of the pole. The procedure of evaluating the significance of the
multiple poles will be shown in Example 4.8.

(4.55)

Example 4.8
Let us consider the zero-free system with the following transfer function

1

G(s)=—— 4
[10s~ 4+ 3(exp(—s) + exp(—4.3s))s + 0.5(1 + exp(—65))](3s + exp(—1.25s))

(4.56)

A group of poles of system (4.56) that are the closest to the s-plane origin are shown in
Fig. 4.48. In order to evaluate the significance of the poles, let us compensate the multiple
pole of the value -0.787 £ 0.339] (with the multiplicity four) by the multiple zeros
My ¢ =—0.787%0.339jand let us substitute the multiple complex conjugate poles by the poles

that are located in their vicinities, e.g., A4, =-0.78710.289j, A34=-0.737+0.339j,
Ay6=-0.787+0.389j and A7 g =-0.8367+0.3394]. Thus, instead of the dynamics of system

(4.56) we will evaluate the dynamics of the following system (which are very close to the
dynamics of (4.56) in fact)

4
G, (s) = G(s) ((s —1811 (s — 1)) 4.57)

D (5= A)
where G(s) is original system (4.56) and p;, =—0.787£0.339j. The poles of system (4.57)
can be seen in Fig. 4.49 and the values of the poles ordered with respect to the value A,; are in

Tab. 4.6. Since the poles 4 ,..4; g have quite small mutual distances, the weighting function

of Z?:] H;(s) is to be evaluated instead of evaluating the weighting functions of H;;(s),
i=1, 3, 5, 7, separately. As it is seen in Tab. 4.6, if the modes are evaluated separately, the
values of criterion hei,i T i=1, 3, 5, 7 are much higher than the value of heg, which
corresponds to the closest pole to the s-plane origin (thus it is likely to be the most significant
one). However, if the weighting function of Z?:l H;(s) 1is considered, the weighting
functions of H;;,((s), i=1, 3, 5, 7, are superposed and the resultant weighting function and

the value of h, ¢ are comparable with the weighting function of Hg(s) and /fgg,



respectively, see Fig. 4.50 and 4.51. As can be seen in Tab. 4.6, considering the criterion A, ,

the most important modes of system (4.57) are the modes corresponding to the group of the
poles A4 5..475, and Ag. In fact, as can be seen in Fig. 4.54, where the step responses of the

poles shown in Fig. 4.50 - Fig. 4.53 are gradually superposed, and according to the values
hejo11and hey, also the poles Ay jand Ay, are fairly important (but not so important as the

poles 4;,i=1..9). The values of h,; corresponding to the remaining poles in Tab. 4.6 are
much less than the value of /4, corresponding to the less significant pole A, from the group
of the decisive poles, which indicates their unimportance. Comparing the step response of the
finite order system given by Zzl H;(s) with the step response of original system (4.56),

both shown in Fig. 4.54, we cannot see any differences. Thus, the group of the poles
determining the dynamics of system (4.56) consists of the multiple pole (which we have
substituted by the poles 4;,..4;g5), the real pole Ay, the complex conjugate pole A

(responsible for the slight oscillations in the step response) and the real pole 4;, .

Tab. 4.6 The poles of system (4.57) and the values of the residues and the
significance evaluating criterion

i A R(A) he,

1 [-0.787 +0.289j | (-6.275 - 0.886j) 10 | 1.259 10°

3 1-0.737 +0.339j | (4.368 - 3.642j) 10 8.749 10 bt =2.032

5 [-0.787 +0.389j | (1.943 + 1.965)) 10 4.087 10 1.8 ==
7 |-0.837 +0.339j | (-0.137 +2.960j) 10 | 9.661

9 [-0.2899 1.957 1.957

10 |-0.072 + 0.462j | (7.175 + 6.248j) 10> | 2.756 10

12]-1.113 -7.0850 107 7.085 107

13 |-0.355 + 1.789j | (1.098 + 1.771j) 10° | 4.986 107
15-0.787 +0.339j | (0.875 +2.253j) 10° | 2.066 10
17 |-0.787 +0.339j | (-0.883 - 1.979)) 10° | 2.019 10°®
19 |-0.787 +0.339j | (1.230 - 1.613j) 10*® 2.461 10
21(-0.787 +0.339j | (-1.941 +0.362j) 10® | 3.893 10°®

As can be seen in Tab. 4.6, also the multiple poles are evaluated, i.e.,
Ais+2i16+2i = —0.78710.339j,i=0..3. Obviously, the poles are very well compensated by

the zeros because the significance-evaluating criterion acquires very small values indicating
the insignificance of these poles in the system dynamics. It should be noted that to achieve
such a result, the values of the poles have to be computed with high precision.

To conclude, it has been shown in Example 4.8 that the compensation of the multiple
poles and their substitution by the distinct poles that are close to the multiple poles is
reasonable and it is a possible approach to evaluate the significance of the multiple poles.
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Fig. 4.48 The poles of system (4.56), Re(M(s))=0 - solid, Im(M(s))=0 - dashed,
M(s) -denominator of (4.56)
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Fig. 4.49 The poles of system (4.57), in which the multiple poles are compensated by the
zeros and substituted by a group of distinct poles located in the vicinity of the multiple pole.
Re(M(s))=0 - solid, Im(M(s))=0 - dashed, M(s) - denominator of (4.57)
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4.4.5 Global pole significance evaluation

Suppose we have MIMO TDS transformed into the input output transfer functions

N (s)

G (s)= M)

(4.58)

where Ny (s), M(s) are given by (1.43) and (1.44), respectively (for retarded systems
H; =0, i=1..N), and the indexes k and / denote the particular input-output relation. Each of
transfer functions (4.58) may be expanded into (4.45) in which the modes are represented by

the transfer functions Hy;,;(s) of form (4.46) (for the real poles) and (4.47) for the complex

conjugate pairs of poles), respectively. Considering whole system (4.58), the evaluation of the
pole significance is not easy, since the poles (which are common for all the transfer functions
G(s)) have different roles in the dynamics of each of the transfer functions Gy(s) depending
on the distribution of the zeros of Gy (s). As can be seen, all the transfer functions Gy(s) have
the common denominator M(s). Therefore, in order to evaluate the global significance of the
poles, instead of the transfer functions Gy(s), let us expand the transfer function

1
M (s)

G,(s5)= (4.59)

into the Heaviside series (4.45). The convenience of evaluating (4.59) is not only in spearing
the effort in the pole significance evaluation. As we have seen in Example 4.7, e.g., the pole
Ay>, which is actually the closest one to the s-plane origin, is insignificant in the dynamics
because it is compensated by the zero ;. Obviously, such an evaluation of the pole 4,, may
be quite unrobust. If the system parameters change, the zero-pole compensation is not
complete and the significance of the pole 4,, is likely to rise significantly. On the other hand,

the evaluation of the poles based on (4.59) is robust since (4.59) does not have any zeros to
influence the significance of the poles. Another reason of using (4.59) in evaluating the pole
significance is given by the fact that in the control design methods based on pole placement,
which are used to obtain safely stabilised damped system dynamics, the role of zeros in the
dynamics is not considered.

Example 4.9

Consider system (4.52) from Example 4.7. In Tab. 4.7, we can see the poles of the
system ordered with respect to the criterion #,, applied to the weighting functions of the

partial fractions of system (4.59) where M(s) is given by the denominator of (4.52). Obviously
the significance evaluation of the poles of the zero-free system gives quite different results
compared to the significance evaluation of the poles of the system (4.52). First of all, the pole
Ay, has been evaluated as the second most important. In fact the pole A,, is the most

important pole, since A3 4 and A, ; are quite close to each other and if evaluated as such poles,
Le., the weighting function M, (s)+ M3 4(s) is evalvated, A, ,=0.331, which is close to
hes, . Also most of the other poles have different positions in Tab. 4.7 than in Tab. 4.1.

However, the changes in their positions are not so different as the change of the position of
the pole A,,. As can be seen in Fig. 4.36, the most significant poles according to Tab. 4.7,

ie., Ay, 434 and A4, are the closest poles to the s-plane origin. This result points out the
good features of the evaluation based on the expansion of (4.59).



Tab. 4.7 The poles of system (4.59) with M(s) is given by the denominator of

(4.52), the values of the residues and the significance evaluating criterion

i A R(A) he,

3| -0.128 +0.089j | (-2.525 +2.111j) 107 | 5.109 10
22| -0.050 3.117 10™ 3.117 10™
1| -0.081 +0.176j | (9.583 - 1.237j) 10" 2.395 10"
7 | -0.321+0.472j | (7.352 +0.338j) 10* | 1.693 107
5| -0.516+0.352j | (1.937-3.928j) 10* | 4.058 10
14| -0.049 +0.636] | (0.517 + 1.599j) 10* | 5.197 10
9 | -0.656 +0.242j | (-0.512 - 1.3589j) 10* | 1.169 10™
11| -0.730 +0.124i | (-6.713 -4.512j) 10° | 1.343 10
13| -0.754 -6.726 107 6.726 10°
16| -0.050 + 1.257j | (1.272 - 4.849j) 107 1.793 10°
18| -0.315+1.252j | (6.688 - 2.722j) 10’ 1.965 107
20| -0.050 + 1.885j | (-4.438 - 5.265j) 10° | 2.491 10
23| -0.331 +2.086j | (0.872 +2.044j) 10" | 5.28510™"°

4.5 Gradient based state variable feedback control, direct pole placement

The application field in which the designed quasipolynomial mapping based rootfinder
and the evaluation of the pole significance may be utilized are the frequency based control
design methods. In this section, according to the fourth objective of the thesis, I am going to
investigate the potentials of the control method of TDS based on state variable feedback
control, see Zitek and Vyhlidal, (2000,2002a, 2002b). Consider coefficient feedback from the
state variables (1.127) to control a retarded TDS, i.e., a system of form (1.15). Such a
coefficient feedback does not accomplish a state feedback in fact if applied to TDS because
the vector x(¢) does not represent the system state any more. In spite of this fact, feedback
(1.127) has proved to be an efficient tool to design robustly stable dynamics in TDS. Closing
feedback (1.127), the characteristic equation of the feedback system is as follows

M(s,K)=det[sT-A(s)+ B(s)K ]| =0 (4.60)

Suppose the original spectrum of poles, i.e., the eigenvalues of the system matrix A(s), is
Sp(A(s))={A;},i=1. and the characteristic quasipolynomial of the original system is
M (s) =det[sI — A(s)]. Closing feedback (1.127) the characteristic quasipolynomial of the
system changes from M (s) to M (s) given by (4.60). Such a change of the quasipolynomial
result in the change of the spectrum of the system poles into
Sp(A(s) -B(s)K)={o ,-},i =1..00. Since quasipolynomial (4.60) is linear with respect to K
(Vanécek, 1990), (Zitek and Vyhlidal, 2002a,b), the following relationship holds between the
original M (s) and the feedback system quasipolynomial M (s, K)



M(s,K):MO(s)+Z%Kj
J

j=!

(4.61)

where the gradient derivatives of M(s, K) are independent on K. Obviously these derivatives
are variable in s too, owing to the exponential functions in M (s,K).

Consider the original system has undesirable dynamics, i.e., the group of the most
significant poles of the original system brings about too slow or less damped character of the
dynamics or the system is even unstable. The aim of introducing the feedback from the state
variables is to place the most significant system poles into prescribed new positions
s=0;,i=L2,.., ijax <n (nis system order), which are chosen to endow the system with
more favourable dynamics. For any prescription of ¢; the following relationship holds

-

oM (s, K)

M (0;,K)=0=M(0;) + Z_: K{T (4.62)
J= 1 J §=0;

i.e., a set of linear algebraic equations with the unknown parameters K, K, ,...,K,. In fact,

equations (4.62) corresponds only to the prescribed real poles o;. If a prescribed pole is

complex o; = f; + j@; , equation (4.62) has to be split into two equations

- oM (s, K
Re(M (6;,K)) = 0=Re(My(0;)) + Z_: K ;Re {%} (4.63)
J=1 J §=0;
- dM (s, K)

arising from the separation process of the real and imaginary parts of each of the elements of
(4.62). Prescribing a complex pole o; =, + jw, to the feedback system, also its complex
conjugate pole 0; =/ —jw,; is being assigned automatically, which justifies the fact of
having two equations (4.63) and (4.64) for one prescribed complex pole.

In tuning the feedback coefficients, not only the single o, but also multiple poles can be
prescribed to the feedback system. If one of the prescribed o, e.g., 0, is a multiple pole with
the multiplicity d, only one condition of the forms either (4.62) (for real pole) or (4.63) and
(4.64) (imaginary pole), with s = ¢, can be used in the set of equation for computing K. The
missing d-1 conditions are to be provided as

d"M(s,K) [ d"My(s) - | 4V | oM (s,K) 3
{7% } {741& } +Z_:K1[dsv{ e ﬂ =0 (465
§=0 s=o, J 1 J s=0,

=0, =




v=1,2,...,d —1. If the prescribed pole is real, d-1 equations of form (4.65) are to be used in

the final set of equations. If the pole is complex, analogously to the case of distinct poles,
equations (4.65) has to be split into real and imaginary parts

v M v r v ]
Re LM K) _Re| LMo +Y K Re d_| oM (s K) =0 (4.66)
ds’ ds’ — dsV| OK;
L Jds=0, L ds=0, J=1 L L J Als=0,
B v 7 B 1% ] r [ 14 i 7]
Im £ M K) ~ 1m LMo +Y K ;Im d”| oM (s.K) =0 (4.67)
ds” ds” — "/ ds¥| OK;
L Jds=0, L ds=0, J=1 L L J Als=0,

In case of prescribing the poles as distinct ones, evaluating the partial derivatives in
equations (4.62), (4.63) and (4.64) and substituting the prescribed poles into the equations, the
following system of equations results

SK=m (4.68)

KeR"(r<n), Se R? and me R? (g <n) where

Sk IM (s, K)
S= SRl,j ,Sk’j:|:aT’:| fOI'I'CI:l]O'k,
N J §s=0
11.j ‘ (4.69)
M (s,K) dM (s, K)
SRl,j:Re T ’Sll,j =Im T forcomplex O'l
I ds=0, I ds=0,
and
My
m=|mpg; |, My =M0(O'k), mg; = RC(M()(O'I)), myp = Il’n(Mo(O'l)) 4.70)
m,l

where k=1..g,, g, is the number of prescribed real poles, [ =1..g., ¢. is the number of

prescribed imaginary poles, g =g, +2¢q,., and j=l1..r, r is the number of feedback loops from

the state variables. If r<n, vector x(7) is not complete in the feedback (1.127). If any of the
prescribed poles are multiple, the matrices S and m are obtained in the analogous way as in
the case of prescribed single poles. The only difference consists in involving the terms of
equations (4.65), (4.66) and (4.67) instead of those of (4.62), (4.63) and (4.64) in assembling
the matrices S and m.

Obviously, the maximum number of the poles that might be prescribed using the state
variable feedback control is equal to the number of the state variables, i.e., to the system order
n. Thus, having g = n, the system of equations (4.68) may be solved as

K=S"'m (4.71)



if the matrix S is nonsigular. However, more numerically stable techniques of solving system
of equation (4.68) are the iterative methods, e.g., Gauss-Seidel method, see the practical guide
(Barrett, et al., 1994).

In general, there may be less than n significant poles with undesirable positions in the
spectrum of the original system. Provided that the other poles are much farther to the left from
the imaginary axis, it is reasonable to prescribe new positions only to these poles with
undesirable positions. One possibility to solve the task of g < n consists in using only r = ¢
feedback loops, which reduce the problem to solve set of equations (4.68). Another
possibility, which is likely to result in more robust dynamics of the feedback system, consists
in using all the feedback loops which are available. To obtain the feedback coefficients, set of
underdetermined equations (4.68), r>q, is to be solved. Using the Moore-Penrose inverse

S*of S (Ben-Israeland Greville, 1977), (Penrose, 1955), the feedback coefficients are given
by

K=S"m (4.72)

see also Michiels, et. al., (2002). The Moore-Penrose generalized matrix inverse is a unique
matrix pseudoinverse, which provides the solution with the minimal norm

1K = K2+ K2 4.+ K, 4.73)

Apparently the desired eigenvalue positions are to be prescribed with respect to 4;, i =1,2,...
constituting the group of the most significant system poles. It is of little sense to assign the
insignificant system poles because they cannot affect the actual system behaviour.

The crucial issue of pole assignment in TDS (1.15) is the following. Although equation
set (4.72) may be solved for arbitrary set of given o;,i=12,...,n, in fact the region where

these prescribed values may be taken from is rather restricted. Obviously, the prescribed
0;,i=1,2,....,n have to correspond to the eigenvalues A; with the largest values of the

criterion h,; given by (4.51). Obviously, the set of n eigenvalues is only a little part of the

whole spectrum. Thus an infinite set of the rest of eigenvalues is placed spontaneously. To get
the prescribed o; actually determining the system dynamics, it is necessary that the assigned

eigenvalues constitute the set of most significant poles of the system dynamics being
designed. Basically, it means that o; must not be prescribed too fast, i.e. too far to the left

with respect to the original positions of the poles. If such too fast eigenvalue is prescribed, the
consequence is that one or more of spontaneously placed eigenvalues takes over the role of
the significant poles in the new spectrum. Often such spontaneously placed pole causes the
instability of the system. To avoid safely the case of such a pole placement failure, it is
necessary to try repeatedly a sequence of the prescribed new positions of the dominant system
poles with the stepwise increasing sizes. The critical size of this shifting is when firstly a
spontaneously placed dominant pole with undesirable position appears.



Example 4.10

Consider retarded TDS (1.20) with the following functional matrices

A(s) =
ey exp(-15s) 13exp(-2.25) 46"1’(-312—2:@(—6.3@ ]
| exp(—2s)2—sexp(—4s) _ Sexp(-4.75) 2exp(3.55) exp(2.55)
100] jgexp(-2.75) 10SPEEDZEPEOD _ ggexp(—6.35) 6exp(~7.55)
3exp(=0.3s) 20exp(—4s) 9exp(~5.55) —27 exp(-1 .Ss;; :Xp(—7.3s)

B(s):$[37exp(—6.5s) 2exp(=3.25) 70exp(-2s) 13exp(=59)[, C=[1111]  (4.74)

First of all, let us investigate the significance of the rightmost poles using the criterion
based on evaluation of the weighting functions of the particular system modes whose transfer
functions are obtained from generalized Heaviside expansion (4.45) of 1/M(s), where
M (s) =det[sI — A(s)]. A part of the spectrum of the system poles are shown in Fig. 4.55 and
in Fig. 4.56, which is the detailed view of the poles closest to the s-plane origin.

Tab. 4.8 The poles of the system with matrices (4.74), i.e., the eigenvalues of the matrix
A(s), the values of residues and the values of the significance evaluating criterion

i A R(A) he,;

1| 0.0485+0.2869j | (-2.521+1.797j) 10 oo

3| -0.0627 5.7927 10 5.793 10
4 | -0.0803 +0.3075j | (-0.1413-2.242j) 10 | 4.368 10
6 | -0.3017 +0.1393j | (-2.426-3.128)) 5.163 10
8 | -0.1773 +1.2208] | (8.413-2.180j) 10° | 2.766 10
10| -0.2695 +2.2185j | (5.369-3.468j) 10° | 2.021 10°
12| -0.5411 +1.1945) | (-3.942+4.126j) 10° | 1.085 107
14| -0.6497 + 1.5882j | (-6.485-7.476j) 10* | 2.140 10™
16| -0.7188 +2.0694j | (1.827+1.110j) 10* | 5.495 10"
18| -0.7671 +2.9787j | (1.788-0.317j) 10* | 5.17210"
20| -0.8071 +2.8606] | (0.114+1.134j) 10* | 2.090 10™

The values of the system rightmost poles with the values of the corresponding residues and
with the evaluation criterion /g, given by (4.51) are in Tab. 4.8. According to the evaluation

criterion g, , obviously, besides the unstable pole for which /,; =<0, there are other seven
poles, those of i = 3..9, for which the criterion g, acquires considerably higher values than
for the other poles in Tab. 4.8., i.e., those of i = 10,.., 21.
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Fig. 4.55 The poles of system with matrices (4.74), i.e.,
the eigenvalues of the matrix A(s)
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Suppose the same number of feedback parameters and prescribed poles is considered.
The system is of the fourth order which offers the opportunity to prescribe directly one of the
following sets: four real, two real and one complex conjugate or two complex conjugate poles
of the system. Using formula (4.72), the number of prescribed system poles can be lower. The
aim of the pole assignment procedure is to stabilize the system and to achieve fast, damped
and robust dynamics of the system. The crucial issue of this task is to prescribe such a set of
the system poles which will assure favourable dynamics. Simultaneously, none of the non-
prescribed poles brings about an unfavourable mode to the dynamics. Therefore, prescribing
the system poles, the positions of the non-prescribed spontaneously placed poles have to be
checked using the quasipolynomial mapping based rootfinder given by the Algorithm 3.1.
Four of the possible sets of prescribed system poles are given in Tab. 4.9. For each set, the
positions of the most significant system poles and the step responses of the system are shown
in Fig. 4.57 and Fig. 4.58, respectively.
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Fig. 4.56 The poles of system with the matrices (4.74), i.e.,
the eigenvalues of the matrix A(s), detail of Fig. 4.54

Tab. 4.9. Sets of prescribed system poles and the resultant feedback gains

kg Prescribed roots Ky, Ckg
1 14x-0.1 [0.0647 0.31885 -0.4224 -0.0679] |0.0279
2 12x-0.1,-0.140.15j [0.0610 0.3520 -0.3805 -0.1126] |0.0788
3 12x-0.15,-0.06+0.15j |[0.0657 0.3563 -0.3630 -0.1222] 0.1455
4 1-0.04+0.2j, -0.1+0.15j |[0.0607 0.3971 0.3237 -0.1352] 0.3296

Parameter c in the fourth column of Tab. 4.9 represents the compensation of the static gain of
the input-output relation, which is changed by applying the state feedback. To achieve
unchanged static behaviour of the system, the static compensation gain is given by the relation

R TCLY) (4.75)
s—0 Mo(S)

The feedback settings shown in Tab. 4.9 differ from each other in the character of the
prescribed eigenvalues. Both real and complex eigenvalues, not only single but also multiple
eigenvalue options, have been chosen in the prescribed sets of o;. Note that each of these

options resulted from a series of several attempts to place the prescribed o, into more
favourable positions.
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the feedback gain settings given in Tab. 4.9, c.p.p. - result of continuous pole placement
procedure, see Example 4.12
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Comparing step responses of the feedback system with the settings from Tab. 4.9 in
Fig. 4.58, it can be seen that the first option (one eigenvalue with multiplicity four) leads to a
monotonous but rather slow response. The second option is considerably faster and in spite of
the prescribed complex pair, the response is aperiodic from the practical point of view. A
small overshoot with a further acceleration of the response is obtained in option k = 3 and
more oscillating response results if option k = 4 is used. The obtained feedback tuning is to be
approved as apt only after checking the resulting system spectrum. The spectra of the options
ks =1 through k, =4 are displayed in Fig. 4.57. Apparently, in all of the options the
prescribed o; have become the dominant eigenvalues of the system designed and none of the

spontaneously placed eigenvalues has taken over this role.

4.6 Continuous pole placement using gradient based state variable feedback
control design

As has been shown in section 1.3.5, an ingenious pole placement method for stabilizing
a retarded TDS using continuous shifting of the rightmost poles of the system to the left, has
been worked out by Michiels, et al., (2002). Prescribing small shifting of the poles from the
current positions, the increments of the feedback gain coefficients in AK can be computed
(by means of the sensitivity matrix defined by (1.142)) from equation (1.147). As will be
shown, such a continuous shifting can also be performed using the gradient based feedback
control design.

As has been shown in the previous section, if the prescribed poles are complex, the
equations corresponding to the poles are given by (4.63) and (4.64). Substituting s = S+ j@
into the characteristic quasipolynomial of the closed loop system, i.e., into (4.60), yields

M(B+jw,K)=det[(B+jw)I - A(B+jow)+ B(B+jo)K] =

=R(B,0,K)+il(B,0,K) (4.76)

Prescribing only the real parts of the complex poles, i.e., 5;, we have the following equations

R(f;,0;,K)=0 (4.77)
1(B;,0,,K)=0 (4.78)

for each of the prescribed S; with the variables K|, K>,...,K,and @; to be computed. Unlike
equation (4.60), equations (4.77) and (4.78) are linear neither with respect to K, K»,...,K, nor
with respect to @; because @; are here considered as the unknown variables). This
nonlinearity has the inconvenient consequence of loosing the possibility to place the poles
arbitrarily. Consider the actual setting of the feedback coefficients is K and the complex
poles 4 = B + jw; correspond to this setting. Suppose we displace the real parts of the poles
Bi— Bi+Ac,i=12,..,q.(q. is the number of prescribed complex poles). Provided that
Ao are small, approximate values of Aw; and AK; can be obtained as the solutions of the

following set of equations

4 OR(B,0,K OR(f,w,K
R(f; +A0,w,-,K)+ZAK{%}ﬂ ﬂ+Aa+Awi|:%:|ﬂ=ﬂi+Aa=O (4.79)
J @ a’=618(i
K =

@,
K K

j=1 ’



oI (B,0,K) oI (B, w,K)
1(B; +As; K)+ZAK {—} ~ w.[—}ﬂzﬂlﬂ =0 (4.80)
| = LA L
K=K K=K

which result from linearizing (4.77) and (4.78), respectively. Thus, analogously to (4.68), we
can write the system of equations

S AK = (4.81)
A® -m '

AKeR’, Awe R% , Se R”U*4) and me RY where

AK
Lm} — Ak, AK, .. AK, A0y A0, .. A0, [T (4.82)
C S S S, 00 . 0]
Sat S35 Sy, 00 .. O
Syt Sg2Sg, 0O 0 .. 0
SR],] SRl,z oo SRl,r SR,wl O oo O
Spi1 Spir . Spr. 0 Sppi .. 0
s=| oM TR e (4.83)
Sch,l Sch,z"'Sch,r 0 0 OSR,qu
SI],] SI],] oo SI],] SI,(()] O oo O
S12,1 S12,2 cee Slz,r O Sl,a)2 cee O

St1ge1 Stgoa--Sigr 0 0 0814,

¢ | 9M(s.K) s OR(B,0,K) g oI(B,0,K)
CITITOK; |smogeas RUT| T 0K, |p=Birac I 0K, |B=fr+ho
K=K O=0 O=0
K=K K=K
g _[aRw,w,K)} g _[auﬁ,w,K)}
Rw; — |~ ~_ .  |p=F+AcPl,ow; — | ..  |B=L+A
N PR A O I PR
K=K K=K
(4.84)
and
ny
m=|mpg, |, m; =M (0} +A0,K), mg; =R(S; +Ac,0,K), my; =1(B +Ac,w;,K)

(4.85)



where k =1..g,, g, is the number of prescribed displacements of the real poles o}, k=1..q.,
q. 1s the number of prescribed displacements of the complex poles, i.e., the real parts of the
poles, g =¢q, +q., and j=1..r, r is the number of feedback loops from the state variables. Thus
prescribing the sufficiently small displacements Ao from the current right-most poles oy,

and B + jay, the feedback increments AK ; and the displacements in imaginary parts of the

complex poles A@; can be computed from set of equations (4.81). If r=g the set of
equations can be solved in a classical method for solving the linear system of equations, see,
e.g., Barrett, et al., (1994). If r < g the underdetermined set of equations can be solved using
the Moore-Penrose inversion, thus

AK
A®

} =S™m (4.86)

Analogously to the algorithm for continuous pole placement based on the sensitivity
functions (Algorithm 1.1), we can write the algorithm for the rightmost pole shifting using
described gradient based feedback design.

Algorithm 4.1 Continuous pole placement using gradient based method
A. Start with g =1

B. Compute the rightmost system poles using the mapping based rootfinder given by
Algorithm 3.1

C. Assemble matrices (4.83) and (4.85) for system of equations (4.81)

D. Move ¢ rightmost poles for which set of equations (4.81) has been assembled in
direction to the left and find solution of (4.81).

E. Monitor the position of the rightmost poles of the system with the computed
feedback settings. If necessary, increase the number of controlled poles g. Stop
when stability is reached or when the available degrees of freedom of the controller
do not allow sup(Re(A))), i=1.. to be further reduced. In the other case, go to
step B.

Unlike Algorithm 1.1, using the method described above, we obtain not only the
changes of the coefficients AK; but also the displacements of the imaginary parts of the poles

Aw; being shifted. This fact may be useful in the task of accelerating the continuous pole

placement procedure. Since the shifts of the poles that are controlled, i.e., the shifts of the real
parts of the poles Ao, are prescribed and A, result from (4.86), the approximate positions

of the poles are known and only few steps of Newton's method is sufficient to obtain new

positions of the poles that are controlled if the feedback gains change from K to K+AK.
However, note that also the positions of the uncontrolled poles are to be monitored. Therefore,
in spite of the rather slower running of the procedure, it is advisable to compute the whole set
of the rightmost poles in each step of Algorithm 4.1.

It is also important to note that from the numerical stability point of view, there should
always be minimum distances between the neighbouring poles that are ashifted. If two of
these poles are too close to each other, equation (4.86) becomes ill-conditioned. In the limit
case that two poles being shifted are identical, matrix (4.83) becomes singular. Even though



the Moore-Penrose inversion of such a singular matrix exists, Algorithm 4.1 is likely to brake
down. Unlike the algorithm presented by Michiels, et al, (2002), the gradient based feedback
control offers the possibility to deal with the prescription of the multiple poles. However,
from the numerical point of view, keeping the poles distinct is safer. The application of
Algorithm 4.1 will be shown in the following examples.

Example 4.11

First, in order to compare the results achieved using the continuous pole placement
method based on the sensitivity function introduced by Michiels, et al, (2002), with the
method described above in Algorithm 4.1, consider the simple TDS of form (1.20) with only
the input delay.

-0.08 -0.03 0.2 -0.1
A= 02 -0.04 —-0.005|, B(s)=exp(=5s)—0.2 (4.87)
-0.06 02 -0.07 0.1

which was used as an introductory example in the paper of Michiels, et al, (2002). The system
with matrices (4.87) have only three poles, 4 =0.108 and /12’3 =-0.149+0.201, i.e., the

eigenvalues of the matrix A. However, if feedback (1.127) with nonzero coefficients is closed,
the number of the poles of the closed loop system is infinite thanks to introducing the delay
from matrix B(s) into the feedback system dynamics, i.e., to the matrix A —B(s)K.

Since the pole A;is positive, the system with matrices (4.87) is unstable. In order to

stabilize the system, let us apply the stabilization procedure given by Algorithm 4.1, based on
the continuous pole placement using gradient based feedback design. The result of pole
shifting can be seen in Fig. 4.59. In the figure, we can see the changes of the real parts of the
poles closest to the s-plane origin during the stabilization procedure. According to Algorithm
4.1, starting with g = 1 only the rightmost pole is controlled, i.e., continuously shifted to the
left. Unlike in paper of Michiels, et al, (2002) we start the procedure with K=[000]. It
implies that the system has only three poles 4 =0.108 and 4,3 =-0.149£0.202j at the
beginning of the stabilization procedure. However, thanks to the changes of the feedback
coefficients which acquire nonzero values after applying the first step of the stabilization
procedure, the exponential function corresponding to the input delay become a part of the
system dynamics matrix. Thus, after the first step of the procedure, besides the slightly shifted
A and 4,3 the system has infinitely many poles distributed in a pole chain typical for the
retarded systems (i.e., the chain consisting of the poles departing from the s-plane origin to
the infinities in both real and imaginary axes with the imaginary parts increasing much faster
than the real parts of the poles). As the pole 4; is being shifted to the left, the chain of poles is
moving towards the imaginary axis, see Fig. 4.59. As can be seen, the only real pole of the
chain 4, gets close to the pole 4; around iteration 140 and from iteration 147 the pole A,
becomes also the controlled pole, i.e., shifted continuously to the left together with the other
real pole 4;. Note that a certain minimum distance of the controlled poles is kept in order to

ensure numerically robust computation. At iteration 166, the complex conjugate pair A, 3
approaches the real axis and splits into two real poles 4, and A; from which the former is

controlled from iteration 191. The pole shifting procedure is stopped as the pole A3 gets close

to the controlled group of poles because only three real parts of the poles may be controlled
using three feedback loops from the state variables. In Fig. 4.60, we can see the evolution of



the feedback coefficients in the continuous pole placement procedure. From the
implementation point of view, only the final set of the feedback gains
K= [— 0.470 —0.498 —O.600] is important, which provides rightmost system poles
A4 =-0.122, A4 =-0.139, A4, =-0.164, A3 =-0.177. The distribution of the rightmost
system poles can be seen in Fig. 4.61 in which the mentioned chain, which has got into this
final position undergoing the journey from — oo (in the real axis), can be seen as well.

0.2

Re(\)

; : : /
%—//I; : ] ] : %_—
) 20 40 60 80 100 120 140 160 180 200 220
Iteration number
Fig. 4.59 Evolution of the real parts of the of the retarded system given by matrices (4.87)
with the feedback from the state variables during the continuous pole placement procedure
performed according to Algorithm 4.1.
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Fig. 4.60 Evolution of the feedback gain coefficients during the continuous pole placement
procedure applied to system given by matrices (4.87) performed according to Algorithm 4.1.
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Fig. 4.61 Resultant distribution of the rightmost poles of the system given by matrices (4.87)

with the feedback from the state variables after applying the continuous pole placement
procedure.

Using the continuous pole placement, the stable system dynamics has been obtained.
However, the system dynamics determined by this group of four poles will be rather slow.
Further using the continuous pole placement procedure proposed in Algorithm 1.1 and



Algorithm 4.1 can not be used to shift the poles more to the left because no more than three
poles can be controlled. The only possibility to shift the poles more to the left is to decrease
the distances between the poles, which is not, however, safe from the numerical point of view.
The way that serves for solving the task consists in applying the pole placement method
introduced in section 4.4 based on the direct prescribing the poles. Using the small changes in
the positions of the prescribed poles, the risk of obtaining an unacceptable result, i.e., the
result in which the non-prescribed poles take over the role of the most significant ones, is low.

For example, obviously, it seems to be natural to substitute three real poles 4,4, and A, by
a triple pole with the position identical with the position of A;. Performing the task, we obtain
only slightly changed feedback gain matrix K =[-0.470 —0.499 —0.601] and a new
position of the pole A; =-0.184. The new distribution of the dominant poles offers the
possibility to shift the triple pole further to the left and to obtain the faster system dynamics.
Prescribing 4 4, =-0.150 results in K= [— 0.471 -0.503 —0.602] and place the fourth
pole into A3 =—0.150. Further shifting of the triple pole to the left is not possible because the
pole A; would take over the role of the dominant pole. The only possibility to make the
closed loop dynamics faster than that given by 4; 4,3 =-0.150 is to prescribe the complex
poles instead of the real ones. Such an acceleration of the dynamics resulting from prescribing
the complex poles closer to the s-plane origin than the obtained supremum of Re(4;),i =1..
will be shown in the application example in chapter 5.

Example 4.12

In order to show that Algorithm 4.1 can be applied also to a quite complicated system
with many different delays (lumped and distributed), let us apply the algorithm to the system
from Example 4.10 given by matrices (4.74). The evolution of the real parts of the poles
closest to the s-plane origin during the continuous pole placement procedure, performed
according to Algorithm 4.1, can be seen in Fig. 4.62 and the evolution of the feedback gains
can be seen in Fig. 4.63. The starting distribution of the poles is that seen in Fig. 4.55 and Fig.
4.56. The region on which the continuous pole placement is performed is 25 =[-1,0.1]x[0,2].
As can be seen in Fig. 4.62, until iteration 11, only the poles being continuously shifted to the
left are the poles 4 ,. From this iteration, also the pole A3 is being controlled. Other three

poles, i.e., A and A4 s, join the group of the controlled poles at iteration 51. The apparent
discontinuities of the pole trajectories at this iteration are caused by the sudden shift of the
poles Ag and A, 5 exceeding considerably the prescribed shifting step, which is done in order
to keep the minimum distance between the poles being shifted. The pole shifting procedure
stops at iteration 95 as the group of poles gets close to the pole A5 because no more than

four real parts of the poles can be controlled. The resultant feedback of the continuous pole
placement is K =[-0.0637 0.3882 —0.3567 —0.1565], which correspond to the rightmost

poles 4, =-0.0371£0.2386j, A3 =—-0.0769, Ac=-0.1172, A45=-0.1559+£0.1631j, for

the distribution of more poles see Fig. 4.64. In Fig. 4.58, the corresponding step response of
the system can be seen. Comparing the step response with the responses obtained as the
results of direct pole placement suggested in section 4.4, see Example 4.10, we can see that
three of the responses in Fig. 4.58 are faster.
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Fig. 4.62 Evolution of the real parts of the poles during the continuous pole placement
procedure given by Algorithm 4.1 applied to system with matrices (4.74)
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Fig. 4.63 Evolution of the feedback gains during the continuous pole placement procedure
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Fig. 4.64 Poles of the closed feedback system with the feedback coefficients
resulted from the continuous pole placement

Obviously, the continuous pole placement does not provide the feedback system
dynamics close to the optimal dynamics (if the optimal is considered well damped and fast
dynamics). It is partly given by keeping the minimum distances between the neighbouring
poles that are controlled in order to perform the numerical robustness of the computation,
which stops the shifting before reaching the minimum of sup(Re(4;)),i =1..c. Another

drawback of the continuous pole placement method is given by the fact that only the real parts
of the system are controlled while the imaginary parts are out of the control.

4.7 Pole placement applied to neutral systems

Although in sections 4.5 and 4.6 we have assumed that the system for which the pole
placement is accomplished is a retarded system, the introduced pole placement algorithms
may be used for neutral systems of the form

d N T T
Z{xg) —ZH,-X(I—?],-)} = [aA@x -+ [dB@u( - 7) (4.88)
i=l1 0 0

as well. However, the potentials of using the coefficient feedback (1.127) to stabilize or
positively change the neutral system dynamics are rather restricted. Stabilization of a neutral
system by feedback (1.127) is possible if and only if difference equation (1.144) associated to
(4.88) is strongly stable, see section 1.3.6 (for complete stabilization of a neutral system see
Hale and Verduyn Lunel, (2002), Salamon, (1984), O'Connor and Tarn, (1983a, 1983b) or
Pandolfi, (1976)), i.e., the roots of the exponential polynomial



N
M ,(s)= de{l - H; exp(—sni)} (4.89)
i=1

(essential spectrum) are located to the left from the stability boundary and do not cross the
boundary for any small changes in delays 7;. Provided that such a condition is satisfied

neutral system (4.88) might be stabilizable by means of the coefficient feedback. The
characteristic function of system (4.88) with the closed coefficient feedback is

N
M(s,K) = de{{l = H;exp(-s ni)} —A(s)+ KB(s)] (4.90)

i=1

and the characteristic function of original system (4.88) is

N
My(s)= de{{l -Y H; exp(—sf]i)} - A(s)] (4.91)

i=l1

As in the case of retarded system, due to the linearity of (4.90) with respect to K, equation
(4.61) holds also for (4.90) and the pole placement may be accomplished by solving the set of
equations analogous to (4.72) in which the matrices S and m are given by (4.69) and (4.70),
respectively, where M (s,K) and M(s) are given by (4.90) and (4.91), respectively. Also
the continuous pole placement method given by Algorithm 4.1 may be used to attempt to
stabilize neutral system (4.88), (provided that the essential system spectrum is strongly
stable). The extension of the continuous pole placement method to the class of neutral
systems is possible because of the use of rootfinding algorithm introduced in chapter 3.4,
given by Algorithm 3.1, by means of which we can compute also the poles of neutral systems.
Application of Algorithm 4.1 to a system with strongly stable essential spectrum will be
shown in the following example.

Example 4.13
Consider the neutral system of the form

%[x(t) —H,x(t — 1) — Hyx(t — 1) = Ax(¢) + Bu(t — 7) (4.92)

with the matrices

0 02 -04 -03 -0.1 O -48 47 3 0.3
H=-0503 0 |,Hy,={ 0 02 O |,A=] 01 14 -04|,B=]0.7
02 07 O 01 0 04 0.7 3.1 -15 0.1

and the delays 7, =0.7, 17, =1.7 and 7=0.5. Using the mapping based quasipolynomial

rootfinder, a part of the spectrum of the poles of system (4.92), i.e., the roots of the system
characteristic function

M (s) = det[s(I— H, exp(—s7;) —H, exp(—s75)) — A] (4.93)
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Fig. 4.67 Evolution of the real parts of the poles corresponding to neutral system (4.92) with
the feedback from the state variables during the continuous pole placement performed
according to Algorithm 4.1.
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Fig. 4.68 Evolution of the feedback gain coefficients during the continuous pole placement
applied to neutral system (4.92) performed according to Algorithm 4.1.



The part of the poles nearest to the real axis is seen in Fig. 4.65, marked with black circles. As
can be seen, the system has three unstable poles 4; =0.218 and 4,3 =0.0976+1.0396;.

Before applying the continuous pole placement algorithm, the stability of the essential
spectrum of the system, given as the solutions of the following equation

det[I —H, exp(—77;s) — H, exp(—17,5)| = 0 (4.94)

has to be checked. The part of the essential spectrum of the neutral system can also be seen in
Fig. 4.65, marked by the asterisks. As can be seen, the spectrum is stable on the whole region
which is shown in Fig 4.65. Due to the periodicity of the essential spectrum with the period
62.83j, no root of the essential spectrum crosses the stability boundary neither in higher range
of @. In Fig. 4.65 we can observe the typical feature of the neutral systems, i.e., the spectrum
of neutral system converges to the essential spectrum as the imaginary parts of the poles
increase. Note that complete stability analysis of the neutral system should involve a robust
stability test of the system essential spectrum (which is omitted here — the system with
strongly stable essential spectrum has been chosen) to decide whether or not the spectrum is
sensitive to the changes in the delays, see Hale and Verduyn Lunel, (2002).

Instead of deeper investigation whether or not the system is stabilizable using (1.127),
we directly apply the continuous pole placement given by Algorithm 4.1. As can be seen in
Fig. 4.66, the method gives positive result, ie., the resultant feedback matrix
K= [2.653 -1.493 —1.823] stabilize the system by shifting the unstable poles to the

positions 4 =-0.1048 and 4,3 =-0.1946%0.2527j. The evolution of the continuous pole

placement can be seen in Fig. 4.67 (the real parts of the poles closest to the real axis) and in
Fig. 4.68 (the coefficient feedback gains). Only the pole /4, is controlled until iteration 7 from

which also 4,3 are controlled. At iteration 55 the couple A4 5 joins the group of the

controlled poles. The algorithm stops at iteration 85, because the pole Ag gets risky close to

the controlled group of poles. The spectrum of the poles of the feedback neutral system with
K given by the result of continuous pole placement can be seen in Fig. 4.66. Comparing the
spectrum with the spectrum of the system without the feedback, we can see that only the
positions of the poles that are close to the real axis of the complex plane changed
considerably, while the positions of the poles more distant from the real axis changed only
slightly (the changes decay with increasing imaginary parts of the poles). This phenomenon is
given by the fact that both the systems have common essential spectrum to which the poles of
both the systems converge as their imaginary parts increase.

Because of the mutual distances between the neighbouring controlled poles kept to
ensure more robust numerical computation during the stabilization procedure, the pole
placement which results from the continuous shifting of the poles does not guarantee the
fastest possible system dynamics. Using the direct pole placement method given by solving
(4.72) we can further change the positions of the most significant poles. However, it should be
noted, that the changes of the positions of the dominant poles should not be too large and each
of the attempts has to be followed by checking the positions of the unprescribed poles. The
result of several prescription the poles can be seen in Tab. 4.10, in which, besides the
prescribed poles, we can see also the resultant coefficients of the feedback gain matrix K and
the compensation ¢ given by (4.75) which compensates the change of the system static gain
caused by introducing the feedback.
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Tab. 4.10 Sets of prescribed system poles and the resultant feedback gains

kg | Prescribed roots Ky, Ck,

1 |c.p.p. [2.653 -1.493 -1.823] |0.01332
2 |3x-0.203 [2.678 -1.577 -1.822] |0.00625
3 1-0.15,-0.15+0.15j |[2.670-1.567 -1.817] |0.00906
4 1-0.2+0.4j, -0.25 [2.601 -1.313 -1.824] |0.04261
5 |-0.1540.45j [2.573 -1.179 -1.826] |0.12846

In Fig. 4.69, we can see the spectra of the group of poles closest to the real axis of the
s-plane corresponding to the result of continuous pole placement and the successive direct
prescribing the poles according to Tab. 4.10. As can be seen, the positions of the poles that are
farther from the complex plane origin change only slightly with respect to the prescribed
poles. The position of the prescribed poles and of the poles that are close to them can be seen
in Fig. 4.70.
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Fig. 4.71 Step responses of neutral system (4.92) with feedback (1.127)
with the settings from Tab. 4.10

In Fig. 4.71 we can see the step responses of the neutral system with the feedback
setting resulted from the continuous pole placement and from the direct pole placement
according to Tab. 4.10. Even though the continuous pole placement safely stabilizes the
system, further correction of the pole positions using the direct prescribing the poles is
reasonable and provides the possibility to achieve more favourable system dynamics.



4.8 Strategy of Pole placement method applied to TDS

As has been shown in Examples 4.10, 4.11, 4.12 and 4.13, the direct prescription of the
poles using the coefficient feedback from the state variables of the system explained in
section 4.4 is a quite powerful control design tool. Although the poles cannot be placed or
shifted arbitrarily, as it is in case of classical systems, the strategy described in section 4.5 is
likely to converge to a satisfactory result. Even though the pole placement approach is rather
heuristic, the pole placement is controlled by the requirements for the system as it is also in
case of the finite order systems. On the other hand, from the application point of view, the
dynamics can be prescribed arbitrarily neither in case of using the pole placement method for
classical finite order system (1.1). In case that the real system with distributed parameters or
transportation phenomenon involved in the dynamics is described using a finite order model,
the description of the dynamics is more or less rough, covering only rather narrow frequency
range of the system dynamics. Prescribing too fast dynamics to such a feedback system may
also result in instability or undesired features of the dynamics caused by the modes that are
not involved in the finite dimensional model.

As a very promising tool in designing the coefficient feedback from the state variables
seems to be the combination of the continuous and direct pole placement methods. The
continuous pole placement applied first gets the poles close to the minimal possible
sup(Re(4;)), i =1..0, i.e., place the pole as much to the left as possible. Then the direct pole

placement is used taking into account the distribution of the poles resulted from the
continuous pole placement as the starting distribution of the poles. Using the direct pole
placement the most significant poles are to be gradually slightly shifted to improve the
dynamics. Both the algorithms for pole placement are available on the CD enclosed as Matlab
functions, see Appendix 1.



5. REAL PLANT APPLICATION EXAMPLE

5.1 Model of laboratory heat transfer system

In this chapter, I am going to investigate the features of the dynamics of the laboratory
heating system which has been developed at the Institute of Instrumentation and Control
Engineering in order to test the anisochronic approaches in control and modelling. The other
important topics of this chapter are methods for computing the approximations of the poles of
TDS and the application of the pole placement methods using the coefficient feedback in
control of the laboratory plant.

4 Cooler

Ve

h,set l

Heater

Fig. 5.1 Scheme of the laboratory heating system, the approximate temperature distribution
over the plant at the chosen operational point is visualized by shade of grey



The scheme of the laboratory system is sketched in Fig. 5.1. The heating system
consists of two heating circuits with the circulation of the heat medium (water) accomplished
by two pumps (one in each circuit). The heat source of the system is an electric heater, located
in the primary circuit. The heat exchange between the two circuits, which is controlled by the
mixing valve, takes place in the multi-plate heating exchanger. The last important component
of the system is an air-water cooler located in the secondary circuit. As can be seen in
Fig. 5.1, the components of the system are connected by the piping lines that provide the most
important delays in the system. For the technical data of the system and its components, see
Appendix 2.

Let us consider four temperatures measured on the system, i.e., ¢, - mixed up hot water
at the input of the exchanger (delayed outlet water temperature of the mixing valve),
v, - water/water exchanger outlet, %, % - air/water cooler inlet and outlet, respectively. The
control input of the system is the signal u adjusting the position of the valve cone by means of
the servomechanism, i.e., the mixing ration of the water flow rates coming from the heater
and the exchanger, and thereby the temperature ¢},. The other system inputs are the propeller
velocity in the cooler and the heating performance of the heater.

Obviously, the transportation phenomenon encountered mainly in the piping lines plays
the significant role in the laboratory heating system. However, time delay relations will not
only be used to model the transportation phenomenon. In order to obtain as low order model
of the system as possible, the main system units will be described by linear first order
anisochronic model (4.6), which can be used to fit the higher order dynamics of the units.
Before starting the procedure of assembling the model of the laboratory system from the local
models of the system units, let us note that the model will be valid only for a certain
operational point for which the parameters of the model will be identified. It is given by the
fact that the laboratory heating system is considerably nonlinear and its linear approximation
can not cover its static and dynamic features for the whole range of the settings of the inputs.
Therefore, the variables of the model will be in the form of their increments from their values
corresponding to the operational point.

Since the efficiency of the multi-plate heat exchanger is very high, the heat loss during
heat exchange can be neglected and the logarithmic temperature gradient may be
approximated by the formula

— 1+ 1-
AD =g ——Ly -9y (5.1)
2 2
where ¢, is the other inlet temperature of the exchanger and g = mo/my, where m,, m, are the

flow rates in the parts of the exchangers, i.e., the flow rates in the heating circuits. Balancing
the heat exchange, transportation phenomenon (i.e., ¢, (¢) = ¥.(t — 7, ) , if the heat loos on the

piping line is neglected) and heat accumulation, the model of the system unit may be
considered in the following form

T, —dAji O k,[a0,0) - HTqMa(” ‘I_quc(t —7)]-[A%, () -AB(-7)] (5.2)

where T, is the accumulation constant, K, is the heat transfer coefficient, and 7, is the time
delay.

As the second unit of the system let the longest pipeline be considered connecting the
heat exchanger with the cooler. The simplest model of the unit is pure time shifting of the
pipeline-input temperature, i.e., 4(f) =%, (¢ —17},). Physically more relevant model of the



long pipeline is the model based on a distributed delay, i.e., ¥4(t) = J;d dr(7)¥,(t—7), where

r(7) is the distribution of the delay. However, since the aim of the model design is to obtain
as simple model as possible and the distributed delay is not a convenient model unit to deal
with, the following first order model will be used to approximate the dynamics of the
distributed delay in the piping line

dAj?(” =A% (1) + KgAS, (t — 7g) (5.3)

Ty

where Tj is the time constant, 74 is the delay and K is the static gain coefficient. Using
(5.3) to model the longest pipeline unit is convenient because it provides the temperature
U4 () as the state variable of the system.

The last unit of the secondary heating circuit is the cooler. Let the system input
controlling the propeller velocity is considered constant, the unit may be described by the
mentioned first order anisochronic model (4.6)

Tc %Z—Aﬂc(l‘_nc)ﬁ_ KCAﬂd(t_TC) (54)

where T is the time constant, 7, and 77, are the delays and K is the static gain coefficient.

A markedly nonlinear system unit is the mixing valve. Even though the characteristic of
the valve is linear, its outlet temperature of the water is given by

8, = (), + (1 —v(u), (5.5)

where @ is the outlet water temperature of the heater, #},1s the outlet water temperature of
the exchanger and v is the mixing ratio given by the actual value of the system input u. Instead

of building the model using linearized relation of (5.5), which would be supposedly valid only
for relatively small Au, let the proportional feedback from 4, () be introduced (with
1y =0.25V/°C, found in the experimental way using Ziegler-Nichols rules), see Fig. 5.1, and
the arising control loop be described using the first order anisochronic model

T, dAj];(t) ==AG, (1 =)+ KpyAD, (1 = 7))+ Ky A, oo (1 —7) (5.6)

where ¢}, ¢ () 18 the set-point value of the temperature ¢}, (¢) , 7, is the time constant, 7}, 7,

and 7, are the delays and K, and K, are the static gains. In fact, equation (5.6) is the
approximation of the large part of the primary heating circuit. Omitting the model of the
heater is possible because the heator is controlled by a thermostat, which keeps its outlet
water temperature almost constant independently of the actual values of the system inputs.
The model (5.6) is valid if the heat exchange performance of the exchanger is close to 100%,
which is satisfied in case of the used multi-plate exchanger. Thus, to model the back-flow of
the water in the primary heating circuit, the temperature ¢, (¢) is used in the model instead of

t,(t) (where #},(¢) is the other outlet temperature of the exchanger) because #,(f) = 44, (¢) .
In fact, validity of (5.6) is also limited only for small Au , because the length of the delay 7,

depends on the actual flow rates in the inlet branches of the mixing valve. However, the
contribution of the back-flow effect to the primary circuit dynamics is relatively small. This



fact enlarges the range of Au for which (5.6) satisfactory describes the primary heating
circuit.

To sum up, the model of the system consists of four functional differential equations
(5.2), (5.3), (5.4) and (5.6). Performing the Laplace transform of the equations (considering
the zero initial conditions) the model of the laboratory heating system may be written in the

form

5X(5) = A($)X(5) + B()A D, o (5)

(5.7)

where x(s) = [Az$11 (s) AL (s) ADy(s) Aﬂc(s)]T is the vector of the state variables, and

—exp(—7ps)  Kpexp(=7ps) 0 0
T T
K,  —(+05K,(1+9) . (1= 0.5K (1 - q))exp(—7,s)
—_ Ta Ta Ta
A= Kqexp(=7a5) -1 .
Iy Iy
0 0 K. exp(—7.s) —exp(—1.s)
i T, T, |
T
B(s)= {M 00 0}
Ty

Since all the system state variables are measured, they all might be considered as the system
outputs, i.e., C=I. However, since a control of the variable #,() will be worked out in

section 5.5, let #%.(¢) be considered as the only output of the system, i.e., C=[0001].

65

200 250 350 400 450 500

t[s]
Fig. 5.2 Step response comparison of the laboratory system (influenced by noise) and its

anisochronic model (5.7) (smooth), Az}, ¢ (50s) = 20°C

100 150 300



The parameters that assure a quite good approximation of the system step response
performed in the vicinity of the operational point for which the model is assumed to
approximate the system dynamics are the following:

T, =14s, K, =024, K, =0.39, i, =6.5s, 7, =40s, 7, =13.25
T,=3s, K, =1, 7, =13s,g=1 (m = my=0.08 m’/hour)
Ty=3s, Kg=0.94, 7, =18s

T.=25s, K. =081, 1.=92s, 7, =2.8s

The comparison of the step responses of the system and its model can be seen in
Fig. 5.2. Generally, the model whose parameters are derived from a single step response of
the system does approximate the model only roughly on a bounded frequency range.
However, in this application example, the aim of which is not a thoroughgoing analysis of the
system dynamics but the demonstration of the approaches and the methods worked out in the
thesis, let the model with the parameters obtained be considered as sufficient. Nevertheless,
the step responses are so close to each other that the model is likely to be a good
approximation of the system.

5.2 Analysis of the laboratory plant dynamics in the vicinity of the operational point

Having the linear model of the laboratory heating system in the form of retarded system,
let us analyse the modes of the system dynamics. First of all, let us transform model (5.7) into
the form of the transfer function

_NG)
G(s)= M) exp(—s7) (5.8)

According to (1.41) and (1.42) the numerator and denominator of (5.8) result in

N=4.04107 (5.9)
M(s)=s*+ in-(s)si (5.10)
i=0
where

0p(s) =2.721-10"* exp(—15.75) —1.036 - 10"+ exp(—40.3s) —3.265- 107> exp(—49.2:)

0,(s) = 6.803-10~* exp(=6.55) +3.810- 10 exp(—9.25) + 2.313 - 10> exp(—15.7s) —
—1.450-10"3 exp(—33.85) — 8.163 - 10~ exp(—40s) — 2.286 - 10~ exp(—49.2s)

0, (5)=0.095+0.058exp(—6.5s) + 0.032exp(—9.2s) + 2.857 exp(—15.7s) —
~5.714-107> exp(—40s)

01 (s) = 0.810 +0.07 1exp(—6.5s) +0.040exp(=9.2s)

and the input delay 7 =34s. Since the numerator part N of (5.8) is constant, the system does
not have any zeros. The character of the input-output dynamics is given only by poles of (5.8),
1.e., the roots of M(s) given by (5.10). Using the quasipolynomial mapping based rootfinder
explained in section 3.4 given by Algorithm 3.1 with the parameters A, =0.003s"' and

En = 107 s, the spectrum of system poles can be seen in Fig. 5.3 and Fig. 5.4.
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Fig. 5.3 Poles of system (5.7), i.e., roots of quasipolynomial (5.10)
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Fig. 5.4 Mapping quasipolynomial (5.10), Re(M(s)) - solid, Im(M(s)) - dashed. Roots of the
quasipolynomial given as the intersections of the contours.

In order to evaluate the significance of the poles, let us expand transfer function (5.8)
into Heaviside series (4.45) and let us evaluate the weighting functions of the partial fractions
H;(s),i=1,2,..., of M(s). Separating the dead time from the system input-output dynamics and

applying the generalized Heaviside expansion (4.45), the following expression holds

G(s) =Gy (s)exp(=s7) = > H;(s)exp(—s7) =Zf£—’1/i£exp(—s 7) (5.11)
i=1"

i=l1

where A; are the poles of model (5.7) and R(/4;) are the corresponding residues. In Tab. 5.1,

we can see the values of 34 system poles closest to the s-plane origin with the corresponding
values of the residues. The poles are ordered with respect to their significance that has been
evaluated using the method based on the absolute value of the difference between the maxima
and minima of the weighting functions of Hi(s) (given by (4.46) and (4.47), respectively) for
>0, i.e., using criterion (4.51). As can be seen in Tab. 5.1, according to the criterion, the most
significant poles of the system are 4; , and A3. Also the following two couples of poles, i.e.,

A45 and Ag 7, may be considered as the significant according to the chosen criterion (but less
significant than 4; , and A3). In Fig. 5.6 and in the detailed view in Fig. 5.7 we can see the
step responses of Gy (s), Hy,(s), Hi(s), Hys5(s) and Hg7(s), (see (5.11)). Considering
the step response of the system Hj,(s)+ H3z(s) (the sum of the responses of
H,(s) and Hj(s), which is very close to the response of Gg(s)) the response of

Hs(s) 1is its determining part while the response of Hj,(s) only form the



Tab. 5.1 The poles of system (5.7) and the values of the residues

and the significance evaluating criterion

A5

R(4)

he;

-0.0316 + 0.1167j
-0.0121

-0.1083 + 0.0791j
-0.0643 + 0.2553j
-0.0951 + 0.4088j
-0.1171 + 0.5648;
-0.2125

-0.1295 + 0.7197j
-0.1327 + 0.8755j
-0.1322 + 1.0311j
-0.1347 + 1.1852j
-0.1425 + 1.3400j
-0.1521 + 1.4972j
-0.1595 + 1.6553j
-0.1630 + 1.8128j
-0.1636 + 1.9692j
-0.3288 + 0.8097j
-0.3979 + 1.5064j

(-1.718+0.617j) 10™
3.801 107
(-3.142-5.757) 10*
(1.094+0.957j) 10™
(1.653+0.562j) 107
(4.356+2.189j) 10°
-9.317 10°
(2.178+1.329j) 10°
(1.422+0.5287j) 10°
(7.770+2.072j) 107
(4.587+1.150j) 107
(2.959+0.635j) 107
(1.99+0.198j) 107
(1.185+0.020j) 107
(7.581+0.974j) 10
(6.039+1.514j) 10
(2.087+1.088j) 107
(-3.959-0.713j) 10"

4921 107
3.801 107
7.928 10
3.817 10
5.170 10°
1.443 107
9.317 10°°
7.607 10°¢
4.858 10°
2.67510°
1.602 10°°
1.038 10°
6.934 107
4.133 10”7
2.687 107
2.190 107
5.906 107
1.172 10"
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Fig. 5.5 Poles of system (5.7), i.e., roots of quasipolynomial (5.10), detail of Fig. 5.3.




final shape of the response of Hj,(s)+ H3(s) in order to fit the response of Gg(s). This
result suggests that the mode of H;(s) is the most important mode of the system dynamics.
However, according to criterion (4.51), the mode corresponding to Az is slightly less
significant than the mode that corresponds to 4 , . Obviously the mode corresponding to 4;

plays more important role in the step response and supposedly also in the low frequency range
of the dynamics. Nevertheless, it does not mean that this mode is more important than the
mode of A ;. In fact, it is not the task to decide which mode is the most important one in the

dynamics, but to select the group of the dynamics determining modes. Obviously, in this case,
the modes corresponding to 4, and A3 belongs to this group. Let us look at the contribution
of the other modes to the response. The contribution of the parts H4 5(s) and Hg7(s) is seen

in Fig. 5.6. As can be seen, the approximation of the response of Gy (s) becomes outstanding
if it is approximated by the response of Hj,(s)+ H3(s)+ Hy5(s)+ Hg 7(s) . In Fig. 5.8, we
can see the frequency responses of system (5.7) and its approximations H;(s)exp(—34s) and
(Hy5(s)+ H3(s))exp(—34s). As can be seen the former approximation is quite good only in

the low frequency range while the latter approximation, which involves both the dominant
modes, covers the whole frequency range of the TDS frequency response displayed
(we[0,1]s™). Even better approximation of the response would be obtained, if also the modes

Hy5(s) and Hg7(s) were involved. To sum up, from the infinitely many poles of system
(5.7), only seven poles that are closest to the s-plane origin, i.e., 45, 43, 445 and Ag 7, are
really significant. The contribution of the other poles to the dynamics may be considered as
negligible.

Now, let us show why the system input delay representing the dead time is to be
separated from the transfer function of the system in analysing the significance of the modes.

Applying the generalized Heaviside expansion directly to the transfer function of system (5.7)
we obtain (the input delay is not separated in this case).

G =Y i) =y 24 (5.12)
i=1 oS

The poles of the system ordered with respect to the values of criterion (4.51) applied to the
transfer functions ﬁi(s) are in Tab. 5.2. The values of the residues E(li) are also in

Tab. 5.2. As can be seen, in this case, the ordering of the poles in the table, i.e., the
significance of the poles, is different. The most significant poles (according to the criterion
(4.51)) are the poles A5, 45, A pand perhaps Ag; and Agg. Such a result is not in
accordance with the analysis of the step and frequency responses we have performed and
which has shown that the most significant poles in the system dynamics are A3 and 4, .
However, if we look at the comparison of the step response of system (5.7) (with not
separated input delay) and its approximations given as the sums of the step responses of
H;(s) corresponding to the most significant poles in Tab. 5.2, we can see that the step
responses of the approximations are getting close to the system step response with increasing
number of H,(s) involved in the approximation. The agreement of the dynamics of model

(4.51) with the dynamics of its approximation given by Hy 5(s)+ Hyp(s)+ Hy5(s) + H3(s) is



035 T T T T T T T T T

0.3

0.25

0.2

H1 ’2+H3+H4‘5+H6’7

H1 72+H3+H475

0.15

9.0 [°C]

0.1 i

0.05

_005 | | | | | | | | |
50 100 150 200 250 300 350 400 450 500

t[s]
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demonstrated also by the mutual correspondance of their frequency responses. Even though
also the system with not separated input delay may be approximated by a finite number of

transfer functions H,(s) resulting from the Heaviside expansion, analysis of the weighting
functions of H;(s) does not truly evaluate the significance of the system modes. It is given by
the fact that also the dead time has to be approximated using the series expansion. It rather



mixes up the evaluated significance of the system modes in the series expansion dynamics. To
conclude, the first step in evaluating the input-output dynamics should be the separation of the
input lumped delay from the system dynamics. It should be noted that if the input delay is not
lumped, it should not be separated, because it may bring about significant zeros to the system
dynamics, see section 4.2.4.

0.05
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Fig. 5.8 Frequency responses of system (5.7) and its approximations
arising from the use of finite number of transfer functions resulting from
the Heaviside expansion of G(s) given by (5.11)

Tab. 5.2 The poles of system (5.7) and the values of the significance evaluating criteria

i Als'] R(4) he;

4 | -0.1083 +0.0791j | (0.121+2.608j) 10° | 1.4601 10~
12| -0.2125 -1.281 107 1.2810 10
1 | -0.0316 +0.1167] | (2.073-4.926j) 107 1.1516 10
3 | -0.0121 5.737 107 5.7370 107
6 | -0.0643 +0.2553j | (-0.137-1.288j) 10° | 2.5454 10°
8 | -0.0951 +0.4088j | (2.375-3.737j) 107 1.0667 107
10| -0.1171 +0.5648j | (2.599+0.294j) 10* | 8.0480 10™
13| -0.1295 +0.7197j | (0.733+1.952) 10 4.6955 10™
15| -0.1327 +0.8755j | (-0.580+1.256j) 10™* | 3.8170 10™
31| -0.3288 +0.8097] | (-0.574-1.584j) 10* | 2.8244 10™
17| -0.1322 +1.0311j | (-6.988+1.707j) 10° | 2.3470 10™
19| -0.1347 +1.1852j | (-3.23-3.274j) 107 1.3574 10
23| -0.1521 + 1.4972j | (3.027-1.810j) 10” 1.1592 10
21| -0.1425 + 1.3400j | (0.787-3.763j) 10” 1.1477 10™
25| -0.1595 + 1.6553j | (2.578+0.753j) 10° | 9.2541 107
33| -0.3979 + 1.5064j | (-2.160+2.108j) 107 | 7.3147 107
27| -0.1630 + 1.8128j | (0.478+1.892j) 10° | 5.8351 10°
29| -0.1636 +1.9692j | (-1.202+1.087j) 10° | 5.417210°
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Fig. 5.11 Frequency responses of the system (5.7) (black circles) and its approximations

arising from the use of six transfer functions resulting from the Heaviside expansion of G(s),
see (5.12), i.e., Hy5(s)+Hyp(s)+ Hy(s)+ H3(s), (empty cirles)

5.3 Comparing spectra of poles of laboratory plant model computed by the methods
based on discretization

In sections 1.2.7 - 1.2.9, I have made a review of methods used to compute the
approximations of the rightmost poles of retarded systems. These methods are based either on
discretization of the solution operator or on discretization of the infinitesimal generator of the
semigroup. In this section, I am going to apply these methods to compute the approximations
of the rightmost poles of model of laboratory plant (5.7) using the following numerical
discretization methods, Euler implicit, Trapezoidal and Runge-Kutta Radau IIA, (for
references see chapter 1.2.7-1.2.9). The problem I am going to concentrate on is the accuracy
of the approximation and the number of the system poles that are satisfactory approximated.
The values of the computed approximations of the poles are compared with the poles
computed using the quasipolynomial based rootfinder given by Algorithm 3.1, i.e., with the
results presented in section 5.2 in Tab. 5.1 and shown in Fig. 5.3, Fig. 5.4 and Fig. 5.5. In
order to obtain more precise values of the system poles /;, the parameter determining the end

of the Newton's iteration has been chosen &y = 10", which guarantees high acuracy of the
computed poles.

First, let us consider the autonomous system associated with (5.7) (which has the same
spectrum of poles as (5.7))

T
dx(t) B
_— !dA(r)x(z 7) (5.13)

where the matrix A(7) is represented by the matrix A(s) from laboratory plant model

T
(5.7),1.e., A(s)= JO exp(—s7)dA(7). Let us transform the right-hand side of (5.13) into form

(1.87). Considering the values of the time constants and the lengths of the delays in system
(5.7), let the sampling period be chosen / = Is. Since the largest delay of system (5.7) is 40s,
H =40 in (1.87). The first method that is used to perform the discretization is the Euler
implicit method. Disretizing the infinitesimal generator of the semigroup (i.g.s.), the discrete



approximation of the system is of form (1.106) where #e R'®*1%* is siven by (1.117),

h=1s and s=1 (for s=1 R-K Radau ITA approximation given by (1.117) is equivalent to
Euler implicit aproximation). The spectrum of # can be seen in Fig. 5.12 and the comparison
of the rightmost eigenvalues of 7 (asterisks) and the poles of system (5.7) (black circles) can
be seen in Fig. 5.13. The rightmost eigenvalues of # approximate directly the rightmost poles
of the system. As can be seen in Fig. 5.13, and in Tab. 5.3 (where the absolute values of the
error of the pole approximations can be seen), the approximation is rather poor. Only few of
the poles are satisfactory approximated. Besides the approximation of the most significant
poles A3, 415, A4 5 and Ag 7 the approximation errors are large.

Discretizing the solution operator (s.0.) using the Euler implicit method, the discrete

approximation of system (5.13) acquires form (1.90), where the matrix ® e R!6#X1644¢ given

by (1.96), if ;=1 and B;=0. The eigenvalues z;, [ =1..160 of @ that are the roots of the
characteristic polynomial M (z)=det[zI—®] determining the spectrum of the discrete
approximation of 7°(1s) are displayed in Fig. 5.14. As can be seen, asymptotic stability
condition (1.60), i.e., all the eigenvalues z; are located inside the circle with the radius equal
to one, is satisfied. It implies that also the discrete approximation of (5.7) is stable. Unlike in
case of discretizing the i.g.s. the spectrum of the s.0. does not directly approximate the poles
of the TDS. According to (1.59), the spectrum of the solution operator is given by
o (T (h)) ={exp(4h)} ={exp(4;)} which implies that the eigenvalues z; has to be
transformed into the s-plane using (1.78) (note that four-quadrant inverse tangent is used).
The final approximations of the rightmost poles of the system can be seen in Fig. 5.15. As can
be seen, the rightmost system poles are being approximated much better than in case of using
the method based on discretization of the i.g.s.. More poles are approximated with the
satisfactory approximation errors, see Tab. 5.3. On the other hand the approximation errors of
the most significant poles are comparable with the errors achieved in the previous case.

The second method used to approximate the rightmost poles is the trapezoidal
numerical method. Using the method the following matrices are obtained: /€ R!64x164
by (1.115) in case of approximating the i.g.s. and ® e R!o#<164 given by (1.96), B, =0.5 and

By =0.5 in case of approximating the s.o.. The whole spectrum of the eigenvalues of # can

given

be seen in Fig. 5.16 and the detail of the rightmost eigenvalues in Fig. 5.17. Comparing the
positions of the rightmost eigenvalues of 4 obtained using the Euler method with the
rightmost eigenvalues # obtained using the Trapezoidal method, see Tab 5.1, more poles of
TDS are approximated well if the latter method is used. As can be seen in Tab. 5.1, also the
approximation errors are much less if the later method is used. Particularly the position of the
pole A3 is approximated with very high accuracy. Also the rightmost pole approximations
resulted from the discretization of s.o. using the Trapezoidal method, which can be seen in
Fig. 5.19, are more precise than in case of using the implicit Euler discretization method. Note
that the pole approximations have also been obtained transforming the eigenvalues of @, the
spectrum of which is seen in Fig. 5.18, into the s-plane using (1.78).

The last method used to approximate the i.g.s. and the s.o. is Runge-Kutta Radau IIA with
s= 3. Using the method the following matrices are obtained: /€ R8s given by (1.117)

in case of approximating the ig.s. and ®e RABMa84 given by (1.104), in case of
approximating the s.o.. The whole spectrum of the eigenvalues of # can be seen in Fig. 5.20
and the detail of the rightmost eigenvalues in Fig. 5.21. As can be seen in Tab. 5.3, using the



numerical method R-K Radau ITA to discretize i.g.s, the pole approximations are comparable
with the pole approximations obtained using R-K Radau IIA to discretize the s.o., see
Fig. 5.22 for the original spectrum of the approximation of the s.o. and Fig. 5.23 for the
righmost part of the spectrum transformed into the s-plane using (1.78). Moreover, as can be
seen in Fig. 5.23, transforming the eigenvalues of @ into the s-plane using (1.78) provides
the resultant imaginary parts of the poles in mod(wh). This unpleasant feature is given by
evaluating the argument of the complex eigenvalues. The problem arises from the fact that the
results of the four-quadrant inverse tangent used in (1.78) are bounded by [—=/h,n/h] while
the boundary of the imaginary parts of the eigenvalues are [-3n/h,3n/h] in case the method
R-K Radau ITA with s=3 is used. Obtaining the spectrum of the pole approximations in
mod(mh) is inconvenient since the imaginary part of each of the poles has to be further
treated to find the real value of the pole approximation. The result of such a procedure can be
seen in Fig. 5.25.. The pole approximations that are located in the interval [0,m/hj] in
Fig. 5.25, they are located in this interval also in the original spectrum seen in Fig. 5.24,
obtained transforming the eigenvalues of @®. The pole approximations that are located in the
interval [w/hj,2n/hj] in Fig. 5.25, they are located in the interval [-m/hj,0] in Fig. 5.24.
Thus, the sign of the imaginary parts of the poles is to be changed and the value w/hjis to be
added to each of the poles. Finally, the pole approximations that are located in the interval
[2nt/ hj,3w/ hj] in Fig. 5.25, these are located in the interval [0,7t/Aj] in Fig. 5.24. In this case,
the value 2m/hjis to be added to each of the poles. On one hand, the procedure of placing the
root approximations into the correct positions is rather tedious, see Engelborghs and Roose,
(1988). However, on the other hand, considerably more poles are well approximated.

Tab. 5.3 Absolute values of the error approximation of the system poles from Tab. 5.1,

Euler, 7 = 1s Trapezoidal, 7 = 1s | R-K, Radau IIA, & =1s| Trapezoidal
i 1.g.s. S.0. 1.g.s. S.0. 1.g.s. S.0. s.0., h =0.33s
1 [6.111 107 [2.660 107 [1.191 107 |8.318 10 [3.073 10” [3.073 10° | 1.394 10°
3 12.957 107 |4.34510° {8.033 10® |2.283 107 | 1.401 107 |1.401 107 |5.074 10
4 11.104 107 |1.278 10® |6.315 10* [6.595 10* [3.973 10* |3.973 10* |6.930 107
6 [3.281 10 |5.760 107 {1.600 107 |3.614 10* |1.362 10* [1.362 10 |6.480 10°
8 [8.130 107 |7.156 10 |6.205 10° |4.462 10™* |9.297 10° [9.356 107 | 1.073 10™
10 [1.516 10" |8.609 10 |1.605 107 |6.002 10* |3.242 10™ [3.281 10™ | 1.342 10*
12 11.093 107 |7.150 10° |1.081 10* |6.961 10* |3.355 10™ [3.355 10™ | 1.147 10™
13 12.431 10" |1.127 107 |3.358 107 |8.870 10™* |6.572 10™ [6.738 10™ | 1.275 10
15(3.348 10" |1.681 107 [6.135 107 |2.199 10™ |5.390 10* |5.801 10™* |3.024 10™
17 2.383 107 |1.028 10" |4.750 107 |5.471 10™* |4.074 10" | 6.932 10
19 2.982 107 |1.623 10" |7.248 107 | 1.199 10™ |8.340 10™* | 1.088 10
21 3.318 107 |2.457 10" |8.679 107 | 1.279 10° |6.782 10" | 1.328 10
23 3.478 107 3.605 10" |9.740 107 |9.919 10" |5.997 10" | 1.454 107
25 3.706 10 1.170 107 | 1.487 107 |1.147 10™ | 1.606 10
27 4.124 107 |6.557 10 |1.545 107 |3.545 10 |1.078 10 |1.951 107
29 4.694 10™ 2.127 107 |7.419 107 |8.613 10" |2.610 10
31(3.545 10" |5.705 10” 1.633 10 |8.359 10° [8.369 107 | 1.573 10
33 9.909 10 4.859 107 [2.597 10% |2.515 10 |3.993 10”
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Fig. 5.14 Whole spectrum of the eigenvalues of matrix @, resulting from discretizing the
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Fig. 5.18 Whole spectrum of the eigenvalues of matrix @, resulting from discretizing the
solution operator using Trapezoidal method
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Fig. 5.22 Whole spectrum of the eigenvalues of matrix @, resulting from discretizing the
solution operator using R-K method Radau ITA
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Fig. 5.26 Whole spectrum of the eigenvalues of matrix @, resulting from discretizing the
solution operator using Trapeziodal method, i = 0.33s
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In Fig. 5.26 we can see the spectrum of discretized s.o. using the Trapezoidal numerical

method for i = 0.33s, i.e., the discretization step is approximately one third of the originally

used discretization step h = 1s. The rightmost eigenvalues of ®e R492X492, which results

from the use of Trapezoidal method, transformed into the s-plane can be seen in Fig. 5.27.
The approximation errors of the poles for 4 = 0.33s can be seen in the last column of Tab. 5.3.
As can be seen, the accuracy of the approximation of the rightmost poles is equivalent to the
approximation of the poles obtained using R-K Radau ITA method with 4 = 1s. As can be seen
in the enlarged region of the s-plane seen in Fig. 5.28, also some of the poles with larger
imaginary parts are quite well approximated. On one hand, the approximation of these poles is
not so good as in the case of using R-K Radau IIA method to discretize the s.o., compare
Fig. 5.28 and Fig. 5.25. However, on the other hand, the imaginary parts of the pole
approximations do not have to be recalculated as it is necessary to do in case of using R-K
Radau ITA method to discretize the s.o..

To sum up, the accuracy of the approximations of the poles varies with respect to the
numerical method used for the discretization as well as with respect to h. Considering the
number of poles being approximated and the accuracy of the approximation, the best results
have been obtained using R-K Radau IIA method to discretize the s.o.. The equivalent
accuracy of the approximation of the rightmost poles has been obtained using the same
method to discretize the i.g.s., but the number of poles being satisfactory approximated was
lower. On the other hand, the method based on discretization of the i.g.s. is convenient
because the rightmost eigenvalues of the resultant matrix are approximate directly the system
rightmost poles. Also the Trapezoidal numerical method has provided good results. Taking
into consideration that the sizes of the matrices »/ and ® were one third of the sizes of the



matrices in case of using R-K Radau ITA method, the approximations of the right most pole
were quite good. Equalising the sizes of the matrices # and ® in both the methods, i.e.,
using i = 0.33s for discretization based on Trapezoidal numerical method, the results obtained
are very close.

As has been mentioned in sections 1.2.7 -1.2.9 and shown in the application example,
the methods based on the discretization provide only the approximation of the rightmost poles
of the retarded systems. In some cases the results obtained may be rather confusing, especially
if the s.o. is discretized, which provides the imaginary parts of the poles in mod(n/h). The
eigenvalues corresponding to the approximations of the poles may be mixed with the other
eigenvalues of the matrices 7 and @, respectively. Also the asymptotic features of the chains
of the poles are not clearly seen in the spectrum of the poles. As has been shown in
section 5.2, see Fig. 5.3 the quasipolynomial mapping based rootfinder I have introduced in
the thesis (given by Algorithm 3.1) provides more transparent result. The approximations of
the poles do not decay with the increasing modulus of the poles. Moreover arbitrary part of
the spectrum can be computed using the rootfinder. On the other hand, it should be noted that
the application of the rootfinder is limited to the low order TDS. As has been shown in
section 3.4.4, the algorithm may be used only if the quasipolynomial, i.e., the characteristic
function of the system, is not ill conditioned. If the quasipolynomial is ill conditioned, using a
method based on discretization is reasonable because the approximations of the poles are
computed directly from the matrices, which is numerically more robust.

5.4 Approximation of the poles of laboratory plant model using its 5model

In section 1.2.10, I have outlined the basic ideas of the method for computing the
rightmost poles of the system based on the &model corresponding to retarded TDS. In this
section, I am not going to study the accuracy of the approximation of the poles obtained using
the method based on the o-model because it is likely to be equivalent to the results obtained
using the discretization of the solution operator. In this section I am going to demonstrate the
basic feature of the eigenvalues of the finite order &-model which converge to the poles of the
original continuous time model as 4 — 0. Let us use the Trapezoidal rule in the discrete-time
integrator 1(8), which implies 7(J5)=(0.525+1)/8 and the right-hand side of system (5.13)

being discretized into form (1.87). Let us gradually decrease the discretization step & starting
from h = Is with the decrement Ah =0.0005s. The results of such a procedure can be seen in
Fig. 5.29 and Fig. 5.30. First, let us look at the distribution of the poles of the &model for
h = 1s, which can be seen in Fig. 5.18 (for 4 = 1s is the spectrum of &model identical with the
spectrum of the discrete model that results from discretizing the s.o0. using trapezoidal
method). As can be seen in Fig. 5.18, there are two groups of poles. The first group is close
to the centre -1/ of the &plane stability region given by the circle with the radius 1/A. The
poles of this group do not correspond to the approximation of the poles of the continuous time
model. The same group of poles can also be seen in Fig. 5.12-5.26 and the number of poles in
this group depends on the numerical method being used. This group of poles is distributed in
a circle with the centre in the centre of the d-plane stability region. Obviously, this group of
poles is moving to the left and the radius of the circle is increasing as & is being decreased.
This phenomenon can be seen in Fig. 5.29 and 5.30. The poles of the other group of the poles
of &model approximate the poles of the continuous time model. As can be seen in Fig. 5.29
and 5.30, these poles move continuously as / decreases. In Fig. 5.31 we can see the
trajectories of these poles for he [1,0.05]s. As can be seen the poles of the second group for
h = 1s converge to the poles of (5.7) as h decreases. The other trajectories have the origins
close to the real axis.



Fig. 5.29 The positions of the poles of the &-model corresponding to the laboratory heating
system described by (5.7) as the function of the discretization step 4 = (1-0.0005/)s, [=0,..300

Re(d)

Fig. 5.30 The positions of the poles of the &-model corresponding to the laboratory heating
system described by (5.7) as the function of the discretization
step h = (1-0.00050)s, [=0,..1200
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Fig. 5.32 The process of emerging of the real poles of the &model given by increasing the
order caused increasing the sampling period &

In fact, the trajectories have the origins at the real axis and they obviously converge to the
poles of (5.7). Let us investigate in detail the process of emerging of the new poles, i.e., the
new trajectories. The procedure of emerging of the new pole-trajectories as h is getting
smaller can be seen in Fig. 5.32. Obviously, the number of poles of the &model depends on .
For h = 1s, the order of the -model is 164 (considering 7,,,x =7, =40s, n =4 (n is the order

of TDS (5.7)), and according to (1.88) providing the approximation of the right-hand side of
the model in form (1.87)). As h decreases, the order of the &model, i.e., the number of its

poles, depends on int(7,,,/h), see Fig. 5.32. If the increment of int(7,,,/h) is one

(considering the continuous change of 4 from the starting value 4 = 1s) the increment of order
of the &-model is four, i.e., four new poles appear in the spectrum of the &-model. First, these
new poles appear in the part of the spectrum that is close to the centre of J-plane stability
region. However, some of these new poles leave this group and become the approximations of
the poles of continuous TDS, i.e., generate one of the trajectories seen in Fig. 5.31. The
procedure of such a process is seen in Fig. 5.32. In this figure, we can see the process of
emerging the real poles from the primary group of poles (group of poles that is close to the
centre of &plane stability region, the position of the centre of Jplane stability region is
marked by the dash-dotted line and the boundary of the group is marked by the dashed line) as
h decreases. In agreement with Fig. 5.18, for & = 1s, there are two real poles located to the left
from the border of the primary group of poles in Fig. 5.32. Let us look at the behaviour of
these and other real poles as 4 is being decreased. One of these poles is moving to the left and
the other, which is more distant from the J-plane origin, is moving slightly to the right as &
decreases. The third real root emerges from the primary group of poles as the order of the
o-model increase to 168, i.e., as 1 becomes less than 1s. As can be seen, this pole is moving to
the left until its position is identical with another real pole in the rightmost point of the



trajectory seen in Fig. 5.32. In such rightmost points of the real pole trajectories, the poles
become complex conjugate pairs and further follows one of the trajectories seen in Fig. 5.31.
As can be seen in Fig. 5.32, another real pole emerges from the group of primary poles as the
order of &-model increase to 172. This pole is moving first to the left and then slightly back to
the right. Finally the pole acquires the same position as the pole that emerged from the
primary group of poles as the order of &model changed to 176. The poles leave the real axis
as the complex conjugate pair and follow another trajectory seen in Fig. 5.31. As can be seen
in Fig. 5.32, in this way, eleven couples of poles have left the real axis to become
approximations of the poles of TDS as 4 changed from 1s to 0.7s.

In this section, I have demonstrated the characteristic feature of &model, i.e., the
convergence of the spectrum to the spectrum of the original continuous TDS if 7 — 0. As can
be seen in Fig. 5.31, the accuracy of the approximation is the best for the poles located close
to the s-plane origin, i.e., for the poles that are likely to be the most important in the system
dynamics. As can be seen, the poles of the o-model move continuously as % is continuously
changed and their trajectories really converge to the poles of original TDS (5.7). The
advantage of using é-model is given by the fact that the poles of the &model that are closest
to the complex plane origin may be considered as the direct approximations of the poles of the
original TDS. The accuracy of the approximation increases as 4 decreases. From the practical
point of view, there is a certain limit for decreasing /& because the value of & determines the
order of the &-model. For example the ends of the trajectories seen in Fig. 5.31 correspond to
the poles of the &model for 4 = 0.05s, providing its order equal to 3204. It is more reasonable
not to use such a short 4 because a quite good approximation of the poles is obtained even for
higher values of A. If it is necessary to obtain better approximation of the poles, the poles of
o-model may be transformed into s-plane by (1.122).

5.5 State variable feedback control applied to laboratory heating system

In this section I am going to apply the state variable feedback control method to perform
the control of the output of system (5.7), i.e., the temperature #.(¢). In order to achieve
tracking the set-point value %, ;¢ (#) by the controlled variable @, (z) with zero control error
in the steady state of the control system, let additional state equation be introduced

%z A, o (1) — A, (1) (5.14)

which is in fact the integration part of the feedback controller used to eliminate the control
error e(r) =8, o (1) — ¥, (1) in the steady state. Thus the system matrices change into

[—exp(-7s) Ky exp(—tys) 0 0 0
T T
K, —(1+0.5K,(1+q) . (1-05K, (1= g)exp(-7es)
T, T, T,
A(s)= 0 Kqexp(=74s) -1 0 0
Iy Iy
0 0 K. exp(—7.s) —exp(—7).5) 0
T, I,
0 0 0 -1 0]




T
B(‘s):{w 000 o} (5.15)
h

and the vector of the state variables is extended into

x(s)=[Azﬂ1(s) AL (s) ADGy(s) AD.(s) I(s)]r

Let the control low be considered in the form of the proportional feedback loops from
the state variables, i.e.,

At s () =—[K] Ky K3 K4 K5][Az9j1(t) AD, (1) AY(t) AD.(1) I(t)]T (5.16)

The scheme of the whole controlled system (the dynamics of the slave control loop is already
involved in model of system (5.7)) is seen in Fig. 5.33
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Fig. 5.33 Scheme of the state variable feedback control of the laboratory heating system

As the first step in designing the values of the feedback parameters, let the continuous
pole placement method given by Algorithm 4.1 be applied. The method gets the poles close to



the minimum of sup(Re(4;)),i=1.. which is good starting position for direct pole

placement method. Introducing the additional state equation (5.14) does not change much the
original spectrum. Only one more pole 435 =0 appear in the spectrum while the positions of

the other poles (the poles of original system (5.7)) remain unchanged. It is given by the fact
that the whole system described by matrices (5.15) is given by serial connection of models
(5.7) and (5.14). Thus the spectrum of the system given by matrices (5.15) is given us the
union of both the spectra. The spectrum of the poles of the system with matrices (5.15) is
seen in Fig. 5.34.
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Fig. 5.34 Poles of the system given by matrices (5.15)

Obviously, the prime task of the pole placement procedure is to move the pole
A5 = 0s! from the stability boundary to the left. In Fig. 5.35 we can see the evolution of the

real parts of the poles closest to the s-plane origin during the continuous pole placement
procedure given by Algorithm 4.1 performed on the region 5 =[-0.5,0.1]%[0,2]. In Fig.

5.36 we can see the evolution of the feedback gains during the procedure. As can be seen,
until iteration 5, only the pole A5 is being shifted to the left. From this iteration also the pole

Ay is controlled. At iteration 48, the group of poles that are continuously shifted to the left is
enlarged by involving the poles 4, and 4;,. The whole group of these poles is further

continuously shifted to the left until iteration 139 at which the procedure stops. At this
iteration the group gets close to the poles Ag7, 439 and A, which can not be all controlled

using only five feedback gain parameters. The final values of the feedback coefficient gains
are K:[O.245 1.101 3.181 3.348 —0.119]. Using the coefficients resulting from the
continuos pole placement procedure, the significant part of the spectrum of the feedback

system is A35 =—0.0413s", 43 =-0.05025"", 2, = -0.0594s™!, 2, =-0.0683+0.1278j 5™,
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Fig. 5.35 The evolution of the real parts of the poles during the continuous pole placement

given by Algorithm 4.1 applied to laboratory plant model given by matrices (5.15)
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Fig. 5.36 The evolution of the feedback gains during the continuous pole placement
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Fig. 5.37 Poles of the closed feedback system with the feedback coefficients

resulted from the continuous pole placement
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Fig. 5.38 Comparison of the set-point responses of the laboratory system with the feedback

from the state variables with various settings of the feedback coefficients, c.p.p. - the

feedback coefficients resulted from the continuous pole placement, k£ = 1, 2, 3, the feedback

coefficient settings according to Tab. 5.4



Fig. 5.39 Poles of the closed feedback system with the feedback coefficients
seen in Tab. 5.4, k=1
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Fig. 5.40 Comparison of the simulated (smooth) and the measured (influenced by noise) set-
point responses of the laboratory heating system feedback coefficients seen in Tab. 5.4, k=1
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Fig. 5.41 Poles of the closed feedback system with the feedback coefficients
seen in Tab. 5.4, k=2
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Fig. 5.42 Comparison of the simulated (smooth) and the measured (influenced by noise) set-
point responses of the laboratory heating system, feedback coefficients seen in Tab. 5.4, k =2
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Fig. 5.43 Poles of the closed feedback system with the feedback coefficients
seen in Tab. 5.4, k=3
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Fig. 5.44 Comparison of the simulated (smooth) and the measured (influenced by noise)

set-point responses of the laboratory heating system, feedback coefficients
seen in Tab. 5.4, k=3

0 50 100 150 200



Tab. 5.4 Sets of prescribed system poles and the resultant feedback gains

k Prescribed roots [s'l] K,
1 | 5%x-0.072 [0.277 2.028 3.841 3.871 —0.159]
2 | 3x-0.07,-0.03+0.06j [0.263 2.230 5.523 4.513 —0.225]

3 | —0.07, 2x(~0.03+0.06j) [-0.208 4.091 7.690 4.576 -0.352]

c.p.p [0.245 1.101 3.181 3.348 -0.119]

Je7 =-0.077610.2212js™", Ao =-0.0869+0.4022s", A, =-0.0878s", A5 =-0.13655",
see Fig. 5.35. Because of the distances between the neighbouring poles being controlled (kept
to ensure the robust numerical computation) the sup(Re(4;)) = —0.04135‘1,i =1..00 is not the
absolute minimum of sup(Re(4;)),i =1...c which can be achieved by means of the coefficient

feedback from the state variables. However, supposedly, the actual pole distribution is quite
close to the supremum.

On the basis of the pole distribution achieved using continuous pole placement
procedure, let us apply the direct pole placement method to further modify the feedback
system dynamics. Prescribing 07 s =—0.072s"' in (4.72), we obtain feedback gains

K =[0.277 2.028 3.841 3.871 -0.159] which results in the spectrum of the poles seen in
Fig. 5.39. Let us note that o; denotes the prescribed spectrum in the direct pole placement
while /;is the spectrum being modified to improve the system dynamics (in this example, it
is the spectrum resulted from the continuous pole placement). As can be seen, prescribing the
multiple pole, sup(Re(o;)) = —0.072s!,i=1..0 has been considerable shifted to the left with

respect to the original sup(Re(/il-)):—O.O413s‘1,i:1..00. In Fig. 3.38 we can see the

comparison of the set-point responses of the closed feedback system with several settings of
the feedback coeffitients. As can be seen, the feedback gain settings, i.e., the result of
continuous pole placement and the result of prescribing oy s =-0.072s", result in

overdamped set point responses. The other two responses in Fig. 5.38 (which are more
favourable considering the speed of the control error rejection as the evaluating criterion)
result if also the complex conjugate pairs are prescribed to the closed loop system dynamics.
The response in Fig. 5.38 marked by 2 is the set-point response of the closed system with
feedback coefficient K =[0.263 2.230 5.523 4.513 -0.225] resulted if the poles

01 3=-0.07s" and 6, =-0.03+0.06js" are prescribed. The corresponding spectrum of the

other poles that are close to the s-plane origin are seen in Fig. 5.41. The response in Fig. 5.38
marked by 3 is the set-point response of the closed system with feedback coefficient
K =[-0.298 4.091 7.690 4.576 -0.352] resulted if the poles oy ,=-0.07s"

03 =-0.03+0.06j s' and o4 =-0.03+0.06] s are prescribed. The corresponding spectrum

of the other poles close to the s-plane origin are seen in Fig. 5.43. As can be seen in Fig. 5.38,
prescribing the complex conjugate poles closer to the imaginary axis than the real poles being
prescribed considerably accelerate the set point responses. As has been shown, using
continuous pole placement method to shift the poles as much to the left as possible is
convenient. Even though the feedback system dynamics given as the result of the continuous
pole placement is not optimal as a rule, it provides very good starting pole distribution for
applying direct pole placement. It would be very difficult to achieve the adequately good



result starting the direct prescription of the poles from the pole distribution of the system
without the feedback, seen in Fig. 5.34.

In Fig. 5.40, Fig. 5.42 and Fig. 5.44, we can see the comparisons of the simulated set-
point responses of the model with the set-point responses performed and measured on the
laboratory heating system with the coefficient feedback gains designed. Even though the
parameters of the model of the heating system have been identified only on the basis of one
measured step response performed in the operational point, see Fig. 5.2, the set-point
responses performed in the vicinity of the operational point are very close to the simulated
set-point responses. As can be seen in these figures, not only the dynamics of the system
output temperature is modelled well, but also the responses of the other temperatures show
very good equivalence between the model and the system dynamics in the vicinity of the
operational point in which vicinity the linear plant anisochronic model is valid.

5.6 Summary

In this part of the thesis I have shown the advantages of using the delays in modelling
the systems with distributed parameters and the transportation phenomenon involved. The
dynamics of the laboratory system is described by fourth order anisochronic model. Each of
the state variables is the temperature measured on the laboratory system. Thus the model
provides the state variables that are the available physical quantities. This fact considerably
simplifies the application of state feedback control because no observer is needed to estimate
the state variables. Even though the system is infinite dimensional, i.e., it has infinitely many
poles, it has been shown in section 5.2 that the dynamics of the system is determined by three
poles closest to the s-plane origin. It has also been shown, that the dynamics of the
anisochronic can be adequately described by fourteenth order delay free model given as the
sum of the first fourteen transfer functions of (5.12). In secion 5.3, the numerical methods for
computing the rightmost poles based on discretization of the infinitesimal generator of the
semigroup and the solution operator are applied to the system model. The resultant spectra are
compared with the results achieved using the quasipolynomial mapping based rootfinder
designed in the thesis. In section 5.4, the methods of continuous and direct pole placement are
combined in designing the state variable feedback control. Three of the resultant feedback
settings are applied to the laboratory system and the measured set-point responses are
compared with the simulated responses.

Remark: Note that for computing the eigenvalues of the large matrices, the Matlab function
eig, which uses the subroutines of Lapack, see Anderson, et al., (1999), has been used.



6. SUMMARY OF CONTRIBUTIONS, CONCLUSIONS AND FURTHER
DIRECTIONS

This thesis provides several contributions to the analysis and control synthesis of linear
time delay systems (TDS). The first contribution consists in the coherent overview of the
methods used to approximate the rightmost poles of the retarded systems. In sections
1.2.7 - 1.2.9, the methods available in the various papers have been adapted to the unified
description of TDS with more than one lumped delays in the state variables (some of the
methods have been originally designed only for a class of retarded systems, e.g., for systems
with single delay). As the numerical methods used for the approximation I have chosen basic
linear multi-step methods, i.e., Euler methods (both implicit and explicit) and Trapezoidal
method. As the representation of the advanced method used for discretizing the TDS the
stiffly acurate method Runge - Kutta, Radau IIA is presented. The methods were used to
discretize both the solution operator and the infinitesimal generator of the semigroup. In the
last chapter of this thesis, in section 5.3, the methods were used to approximate the rightmost
poles of the model of the laboratory heating system. The accuracy of the pole approximations
were studied revealing the potentials in approximating the poles of TDS.

6.1 Algorithms for computing quasipolynomial roots

The first objective of this thesis, i.e., the design of the algorithm for computing the
roots of the quasipolynomials, has been solved in chapter 3, where I have introduced two
algorithms for computing the roots of quasipolynomials. The first algorithm is based on the
extension of Weyl's construction with the argument principle used to compute the number
of poles in a particular suspect region of the complex plane (the region in which we suspect
some roots being located). For the evaluation of the argument increment along the boundaries
of the suspect regions, the graphical based evaluation is used. Although the algorithm
designed is quite reliable, its application may be rather cumbersome if the number of the roots
in the suspect region is large. Therefore, in section 3.4, I have designed an alternative
rootfinding algorithm based on the mapping of the quasipolynomial function. The
algorithm is original, based on mapping the zero-level contours of the real and imaginary
parts of the quasipolynomial and locating the intersection points of the contours. In the first
part of section 3.4, the idea of the algorithm is explained. In section 3.4.1, some of the
algorithms for contour plotting are outlined. For the practical realization of the mapping
based rootfinder, the function contour available in Matlab has been chosen. In section 3.4.1,
the algorithm used in function contour is analyzed. In section 3.4.2, the algorithm for
automatic location of the intersection points of the contours is introduced. The very positive
feature of the mapping based rootfinder is the capability to deal with the multiple roots in the
same way as with the single roots. The only problem which occurs in the process of locating
the multiple roots is the mismatching of the contours close to the point corresponding to a
multiple root, which may result in evaluating incorrect multiplicity of the root. This
inconvenient feature could be eliminated using more advanced method for mapping the
contours that involve and perform the requirement so that the contours were smooth. To sum
up, the algorithm is more powerful than Weyl's construction based algorithm. The mapping
based rootfinder may be used to compute the roots of polynomials, quasipolynomials and
the exponential polynomials which implies that the algorithm can be used to compute poles
and zeros of both retarded and neutral systems. Moreover, also the essential spectrum of the
neutral system can be computed. The algorithm can be used to locate the roots in an arbitrarily
placed region in the complex plane (not only the rightmost roots may be computed). The
accuracy of the root approximations does not decay with the increasing magnitudes of the



poles. Such a rather broad applicability of the algorithm is one of its key merits. Moreover, no
special form of the function being analyzed is required. Another merit of the algorithm is
provided by the possibility to check the positions of the roots visually (roots are given as the
intersection points of the contours). The most important drawback of the mapping based
rootfinder is the incapability to deal with the ill-conditioned (quasi)polynomials. This problem
has been discussed in section 3.4.4. However, this feature is the inherent feature of the
non-iterative polynomial rootfinding algorithms. In my experience, the applicability of the
mapping based rootfinder is comparable with the algorithm used in Matlab function roots.
The incapability of dealing with the ill-conditioned (quasi)polynomials restricts the
applicability of the mapping based rootfinder to the low degree (quasi)polynomials (let us
say up to n<20). It is due to the fact that the higher degree (quasi)polynomials are likely to be
ill-conditioned. On the other hand, note that the anisochronic approach provides models with
low degree characteristic functions for which the mapping based rootfinder gives good results.
The crucial issue of the implementation of the mapping based rootfinder is the suitably chosen
step (increment) of the grid. This problem has been discussed in section 3.4.5. The step
(increment) of the grid should be chosen according to the requirement for the mapped
contours being smooth. The step of the grid also determines the accuracy of the pole
approximations. In order to enhance considerably the accuracy of the pole approximations,
Newton's method is used for each of the poles located in the suspect region. In section 3.4.6,
the algorithm is summarized in Algorithm 3.1 and the aspects of the practical implementation
(performed in Matlab) are discussed. The algorithm is realized as the command function
aroots. Most of the algorithms for analysis and control synthesis of TDS presented in this
thesis are build on this mapping based rootfinder.

6.2 Features of low order anisochronic models

The other objectives of this thesis stated in chapter 2 are solved in chapter 4. First,
according to the second objective of this thesis, the features of the first order anisochronic
model are investigated. Especially, the potentials of approximating the dominant poles using
the first order anisochronic model with delay in denominator are studied. The results achieved
in section 4.2.3 show that two parameters of the denominator, i.e., time constant and time
delay, allows the dominant couple of poles to be placed arbitrarily in the complex plane.
Taking into account that the system dead time may be approximated by the numerator delay,
the first order anisochronic model may be used to approximate the dynamics of the plants
conventionally described by considerably higher order delay-free models. Besides the
investigation of the features of the first order anisochronic model, also the identification
method for assessing the parameters of the model is introduced. The identification method
used is the modification of the well-known method of Astrém and Higglund based on the
critical parameters of the closed loop system obtained from the relay feedback test. I have
chosen this method for identifying the parameters of the anisochronic first order model
because the method has proved to be efficient in real plant applications. In section 4.2.4, the
first order anisochronic model is further extended to approximate also the effect of the
dominant zeros. The extension is performed by involving an exponential polynomial in the
numerator of the transfer function of the anisochronic first order model. By means of the
parameters of the exponential polynomial, the dominant zeros may be placed arbitrarily in the
complex plane. Using this model, the dynamics of plants with zero-effect, e. g., non-minimum
phase systems can be approximated. The drawback of involving the exponential polynomial
in the numerator of the model is given by the fact that besides the dominant zeros being
assigned, infinitely many zeros with large imaginary parts (distributed in a vertical strip of the
complex plane) are introduced into the model dynamics. On the other hand, as has been



shown in the examples in sections 4.2.4 and 4.3, the model may be used to approximate quite
broad class of plant dynamics. The infinitely many zeros in the vertical strip of the complex
plane may bring about difficulties to the control design if it is based on model of the plant. In
section 4.3, 1 have studied the applicability of the anisochronic first order model with the
exponential polynomial in the numerator in the internal model control (IMC) design. Using
this control method, the spectrum of the zeros of the numerator exponential polynomial
becomes the essential spectrum of the closed loop dynamics, which acquires neutral form.
Thus, to design a robust closed loop system dynamics, also the features of the essential
spectrum have to be investigated in order to achieve robustly stable closed loop dynamics. In
section 4.3.2, the robust IMC design based on the first order anisochronic model with the
exponential polynomial in the numerator has been introduced. This result has been achieved
beyond the framework of the objectives of this thesis. However, in this control design
example, it has been shown that the specific features of TDS have to be taken into account in
the control design, which needs certain modifications as a rule.

6.3 Criterion for evaluating the significance of the poles of TDS

The third objective of this thesis deals with the basic feature of TDS - with the infinite
spectrum of TDS poles. In section 4.4, it has been shown that only a specific group of poles
are significant in the system input-output dynamics. In general, the most important poles of
the stable TDS are the poles closest to the origin of the complex plane. However, their
significance is not directly determined by the distances of the poles from the complex plane
origin. Also the distribution of zeros of TDS influence the significance of the poles in the
dynamics. In fact, the input-output dynamics are determined by the distribution of both the
dominant poles and the dominant zeros. In section 4.4, 1 have designed an original
pole-significance evaluating criterion. The criterion is based on the generalized Heaviside
expansion of the input-output transfer function of TDS. First, the poles of the stable TDS that
are closest to the complex plane origin, which are likely to be the dynamics determining
poles, are computed using the mapping based algorithm. Note that the methods for computing
the poles of TDS based on discretization cannot be used because for accomplishing the
Heaviside expansion, we need very precise values of the poles. Thus, having computed the
poles of TDS and performing the Heaviside expansion (provided that all the poles are single),
the transfer functions resulting from the expansion correspond to the modes of TDS. The
significance evaluating criterion evaluate the weighting functions of the transfer functions
resulting from the Heaviside expansion. Particularly, the absolute values of the differences
between the maxima and minima of the weighting functions are evaluated. The larger is the
value of the criterion, the pole is more significant. Since the weighting function of the whole
TDS is given as the superposition of the infinitely many weighting functions corresponding to
the transfer functions resulting from the Heaviside expansion, obviously, the criterion is likely
to evaluate truly the contribution of a particular mode to the system dynamics. The criterion is
transparent, easy to apply and provides reliable evaluation of the significance of the poles if
the mutual distances of the poles are not small. If there is a pole close to the pole being
evaluated, the significance evaluating criterion acquires inadequately large value as a rule.
This feature of the significance evaluating criterion, which has been studied in section 4.4.3,
is induced by the physical equivalence of the contribution of the multiple pole and the group
of distinct poles that are quite close to the value of the multiple pole. For the multiple poles,
the Heaviside expansion formula provides residues equal to infinity, which implies the
evaluating criterion being also equal to infinity. In section 4.4.3, it has been shown, that as the
distance of two poles tends to zero, the values of evaluating criterion of both these poles tends
to infinity. However, if the sum of the weighting functions corresponding to these poles is



evaluated, the criterion truly evaluates the significance of the poles. Thus if there are poles
close to each other, they have to be evaluated as the group of poles, i.e., the sum of the
corresponding weighting functions is analyzed. In section 4.4.4, 1 have designed a method to
evaluate the significance of the multiple poles. The idea of the method is based on the
physical equivalence of the multiple poles and the group of single poles that are close to the
value of the multiple poles. In section 4.4.5, the criterion is modified in order to evaluate the
global significance of the poles of MIMO TDS. The idea of this modification consists in
ignoring the influence of the zeros to the system dynamics (each transfer function of MIMO
TDS has its own spectrum of zeros while the poles are common for all the transfer functions).
Thus only the transfer function with the numerator equal to one is expanded into the
Heaviside series. Consequently the weighting functions of the transfer functions resulted from
the expansion are evaluated. To conclude, the designed criterion for significance evaluation of
the poles can be used to select the most significant poles of TDS in order to substitute its
dynamics by the finite order approximation involving all the substantial modes of the TDS.
However, originally, the method has been designed as the preceding step to the direct pole
placement (particularly the method of global pole significance evaluation). Locating the most
significant poles of the TDS dynamics provides the possibility to shift these poles in order to
improve the system dynamics. The further development of the significance evaluating method
based on the Heaviside expansion might consist in using a different criterion in evaluating the
weighting functions. The criterion based on difference between the maximum and minimum
of the weighting function, which is used in this thesis, provides higher values for the
oscillatory modes of the dynamics, i.e., evaluates the oscillatory modes as more important
than the adequately significant non-oscillatory modes. Thus, a criterion which evaluates
whole the weighting function, e.g., an integration based criterion, might be used to further
enhance the reliability of the significance evaluation method.

6.4 Pole placement based control design in TDS

In section 4.5, 4.6 and 4.7, according to the fourth objective of this thesis, I have
investigated features of the methods for pole placement using the proportional feedback
from the state variables applied to TDS. In section 4.5, the fundamentals of the gradient
based state variable feedback control design are summarized. The algorithm presented
arises from the linearity of the closed loop characteristic function with respect to the feedback
gains and can be used for direct pole placement. The poles being prescribed may be both real
and complex conjugate, either single or multiple. The values of the feedback gain coefficients
result as the solution of the set of linear equations. The equations in the set are given by
substituting the prescribed poles for the operator s in the closed loop characteristic function
(for complex poles, the function has to be split into real and imaginary parts). The maximum
number of poles which can be prescribed is restricted by the order of the system n, i.e., by the
number of available feedback loops. However, since the Moore-Penrose generalized inversion
is used to solve the set of equations, less than n poles may be prescribed to compute values of
n feedback gain coefficients. Using the method for direct pole placement, the infinity of the
spectrum of TDS has to be taken into consideration. The fact that we can prescribe the
position only to n poles, while the other poles (infinitely many) are placed spontaneously,
rather restricts the applicability of the method. Therefore, to obtain satisfactory result, the
following procedure for pole placement using gradient based method is suggested. First, the
poles of the original system are computed using, e.g., mapping based rootfinder. Then, the
pole significance evaluating criterion is used to define the dynamics determining poles. The
third step of the procedure consists in prescribing the new positions to these most significant
poles in order to stabilize or improve the system dynamics. Note that the prescribed shifts of



the poles from their original positions should not be too large in order to preserve the
dominance of the prescribed poles. In the fourth step of the procedure, applying the computed
values of the feedback gain coefficients, the new spectrum of the feedback system poles has
to be checked using the rootfinder. If some of the non-prescribed poles are placed into the
undesirable position, the result of the procedure cannot be accepted and the whole procedure
has to be repeated with the new values of the prescribed poles. If the dominance of the
prescribed poles is preserved after the procedure, the poles may be further shifted if the result
achieved is not satisfactory yet. In this way, the pole placement is accomplished in several
steps. Even though this pole placement procedure is rather heuristic, it has proved to be
efficient in modifying the TDS dynamics. The presented method for direct pole placement can
be used for both retarded and neutral system with both lumped and distributed delays.

In section 4.6 I have modified the method of gradient based pole placement so that it
might be used in the pole placement method known as continuous pole placement (see
section 1.3.5). The method is especially suitable for stabilization of TDS. The idea of the
method consists in shifting only the real parts of the rightmost poles and monitoring the
positions of the other poles. Since only the real parts of the poles are prescribed, the
characteristic function looses the linearity with respect to the parameters being computed
(besides the feedback coefficients, also the imaginary part of the prescribed pole is computed)
if the shifts are prescribed to a complex pole. Therefore, the characteristic function is
linearized and the results achieved are accurate enough only if the prescribed shifts are small.
The advantageous is the possibility to run the algorithm of the pole shifting automatically. At
each step of the continuous pole placement procedure, the rightmost spectrum of the feedback
system is computed using the mapping based rootfinder. The distribution of the feedback
system poles resulting from the continuous pole placement procedure is close to the minimal
supremum of the real parts of the poles. Such a result is convenient from the stability point of
view. However dynamics determined by such a distribution of the poles have often
undesirable features. Since only the real parts of the poles are controlled, the resultant
dynamics may be too oscillatory. On the other hand, if all the rightmost poles are real, the
resultant dynamics are overdamped. Therefore, in some cases, it is convenient apply the direct
pole placement to further improve the feedback system dynamics having resulted from the
continuous pole placement. The algorithm for continuous pole placement (given by Algorithm
4.1) may be applied to retarded systems and also to a class of neutral systems (with strongly
stable essential spectrum). It should be noted that if the methods for pole placement based on
the coefficient feedback from the state variables are used for stabilization, the class of
stabilizable TDS is rather limited. For example TDS with more than n unstable poles and TDS
whose rightmost poles are farther to the right from the stability boundary are highly likely not
to be stabilizable using the gain feedback. Stabilizing such a TDS acquires a form of
functional feedback from the state variables to be used. Also the methods for stabilizing the
essential spectrum of the neutral systems should be investigated to extend the class of
stabilizable TDS. The coefficient feedback from the state variables is convenient because it
can be easily implemented (using. e.g., programmable controllers. However, neither
implementation of the functional feedback (if the distribution of the feedback terms is not too
complicated) acquires excessive effort. Thus, the further direction in the research dealing with
the pole placement applied to TDS should be in designing the methods for robust functional
(and easy to implement) feedback control.

6.5 Real plant application example

In the last chapter of this thesis, the dynamics synthesis and control design methods for
TDS designed according to the objectives of this thesis are applied to the model of a



laboratory heating system. First the model of the laboratory plant is built using the
anisochronic approach. The system is divided into subsystems and each of these subsystems is
modeled using the linear first order anisochronic model. This approach provides the favorable
feature that the state variables are identical with the measured outputs of each of the
subsystems. In section 5.2, the poles of the system model are computed using the mapping
based rootfinder. Consequently, the significance of the poles is evaluated using the criterion
based on the Heaviside expansion of the system transfer function. In section 5.3,
discretization methods for approximating the rightmost poles are compared with the result
obtained using the mapping based rootfinder. The results presented reveal that the mapping
based rootfinder is much better tool for obtaining the positions of the rightmost poles of lower
order TDS (higher order TDS may have ill-conditioned characteristic function which rules out
the applicability of the rootfinder). In section 5.4, another unique numerical result has been
achieved. It demonstrates the continuity of the trajectories of poles of the 6-model with
respect to the sampling period in approximating the poles of the continuous TDS. In section
5.5, the control of laboratory heating system has been designed using the coefficient feedback
from the state variables. First, the continuous pole placement method is applied. The resultant
dynamics are then further improved (the target of the design is to obtain fast and well-damped
dynamics) applying the direct pole placement. Finally, three settings of the feedback gain
coefficients are applied to the laboratory heating system and the measured set-point responses
are compared with the simulated responses.

The mapping based rootfinder, the algorithms for computing rightmost poles based on
discretization, the algorithm for evaluating the pole significance, and both the algorithms for
pole placement using proportional feedback from the state variables are available on the CD
enclosed, see Appendix 1.

To conclude, the main contribution of this thesis is the designed mapping based
rootfinder. As has been shown the rootfinder is a powerful tool for investigation of the spectra
of lower order TDS. Particularly, the applicability of the rootfinder to compute the spectra of
the neutral systems is a unique result. As has been shown the knowledge of the spectrum of
TDS is quite important (more that in case of delay free systems) in analyzing the system
dynamics and designing the control. Note that most of the results presented in this thesis have
already bee published. To sum up, all the objectives stated in chapter 2 have been fulfilled.



APPENDIX 1 - Matlab functions for TDS spectrum assessment and assignment
available on CD enclosed

P=aroots(M,D.d,e)

e accomplishes Algorithm 3.1, compute the roots of function ((quasi)polynomial) M (M(s))
or eigenvalues of the (functional) matrix M (A(s)) both in symbolic variable s,
D=[Lnin Pmax Pmax Pmax] (D =[LPmin>Bmax 1X[@min>@max 1) - suspect region of the
complex plane, d (A) - step (increment) of the grid of nodes on D (), e (&) - absolute
value of the difference of two successive approximations of Newton's method

e P - vector of computed roots in the region D (D)

R=aevalpoles(M,N,P)

e evaluate the significance of the distinct poles using criterion (4.51), M (M(s)) -
denominator function, N (N(s)) - numerator function, both in variable s, P - vector of poles
being evaluated

e R.p - poles ordered with respect to significance evaluating criterion (4.51), R.he -values of
pole significance evaluating criterion (4.51) based on evaluating the weighting functions
corresponding to the poles in R.p, R.r - values of residues corresponding to the poles in
R.p

K=acontpp(H,A,B,Km,dp,ndp,D.d,e)

e accomplishes Algorithm 4.1, H (ZﬁlHi exp(—s7;)) - matrix of difference part of neutral

system, if system is retarded H=0, A (A(s)) - functional matrix of system dynamics,
B (B(s)) - system input functional matrix, all in symbolic variable s.
Km=[K; K> ... K,]- mask of the feedback (n - order of TDS), if K; # 0, feedback from
the i" state variable is used, dp (Ao) - pole shifting increment, product of ndp and dp
define the minimum distances (in real parts) of the poles being shifted),
D=[Lmin Pmax @Pmax @Pmax] - the region on which the continuous pole placement is

performed, d (A;) - increment of the grid of nodes on D (), e (&) - absolute value of the

difference of two successive approximations of Newton's method. Function aroots is used
to compute the poles in D ().

e K.g - resultant feedback matrix, K.c - compensation of the feedback system static gain,
K.p - values of the final pole distribution on D (),

K=adirpp(H,A,B,Km,Pp)

e accomplishes direct pole placement according to (4.72), H (ZﬁlHi exp(—s7;)) - matrix

of difference part of the neutral system, if the system is retarded, H=0,
A (A(s)) - functional matrix of system dynamics, B (B(s)) - system input functional
matrix, all in symbolic variable s. Km=[K; K, ... K,]- mask of the feedback, if K; # 0,



feedback from the " state variable is used, Pp=[07 0, ... 0,] - prescribed poles,

q=q;+2q., q.- number of prescribed real poles, g.- number of prescribed imaginary
poles, g <n (n - order of TDS),
K.g - resultant feedback matrix, K.c - compensation of the feedback system static gain,

P=apolesso(A,h,method,sr)

accomplishes approximation of the rightmost eigenvalues of the functional matrix A
(A(s)) in symbolic variable s (only lumped delays allowed) using the discretization of the
solution operator. First, the matrices of form (1.88) are obtained from A for the
discretization period h, then matrix @ (see (1.90)) is obtained according to the chosen
discretization method, method=1 - Euler explicit (& given by (1.94)),
method=2 - Trapezoidal (® given by (1.96)), method=3 - Runge-Kutta Radau IIA with
stage sr (s), (P given by (1.104))

P.d - poles of the discrete system, P.p - approximation of the rightmost poles

P=apolesigs(A,h,method,sr)

Accomplishes approximation of the rightmost eigenvalues of the functional matrix A
(A(s)) in symbolic variable s (only lumped delays allowed) using the discretization of the
infinitesimal generator of the semigroup. First, the matrices of form (1.88) are obtained

from A for the discretization period h, then matrix #, (see (1.106)) is obtained according
to chosen discretization method, method=1 - Euler explicit (+#, given by (1.109)),
method=2 - Trapezoidal (+, given by (1.115)), method=3 - Runge-Kutta Radau IIA with
stage sr (s) (/A given by (1.118))

P - approximation of the rightmost poles

Remark 1 The command line functions described use the functions of Symbolic Math

Toolbox of Matlab.

Remark 2 The (quasi)polynomials M, N, and the functional matrices H, A, B are in the

symbolic variable s which has to be defined before defining the (quasi)polynomials and
matrices by the command - syms s

Remark 3 The Laplace transform of lumped delays 7; are to be inserted in the form

exp(—tau *s).

Remark 4 Demos explaining further the functions are available on the CD enclosed.



APPENDIX 2 - Technical data of the parts of the laboratory heating system

o Electric heater Stiebel Eltron SHU 58, 2 kW, capacity 5 1,
max. temperature 85°C

e Multi-plate heat exchanger Zilmet Z 1/8, 5 plates, heat transfer up to 3 kW,

A ﬂprim.:200C
e Cooler heating system of Skoda 120, exchanger Sofico,
ventilator - nominal performance 4.6 kW,
air flow rate 250 m’ per hour/195 Pa (300 kg per hour)
e Mixing valve Landis & Gyr, VXG44.15-0.4 (kvs:O.4m3 per hour)
®  Pumps Zirco - Wilo Z15

o Flow rate control valves Danfos RTD-N20

® Piping lines Supersan 15x1, (inner diameter @13 mm)

Tab A.1 Length of the piping lines, see Fig. 5.1

pipingline‘a‘b‘c‘d‘e‘f‘g

length [mm] ‘ 2740 ‘ 570 ‘ 995 ‘ 490 ‘ 400 ‘ 360 ‘ 750
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