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ANOTACE
Použití lineárních modelů pro popis reálných systémů je konvenčním přístupem používaným v oboru

automatického řízení. Pomocí klasického lineárního modelu můžeme popsat pouze část dynamiky systému
(dynamiku v okolí tzv. pracovního bodu). Výhoda lineárních modelů spočívá v jejich snadné
manipulovatelnosti a snadném návrhu řízení pomocí metod dostupných pro tuto třídu modelů. Hlavní
nevýhoda těchto modelů, kromě jejich omezené platnosti, je dána tím, že jejich jedinými dynamickými
elementy jsou integrátory aproximující soustředěné akumulace.  Z toho vyplývá že popis systémů s
rozloženými parametry nebo s fenoménem dopravního zpoždění (se kterými se setkáváme v technické praxi)
je pomocí tohoto přístupu poněkud problematický. Mnohem lepších výsledků při modelování takovýchto
systémů lze dosáhnout zahrnutím dopravních zpoždění do struktury lineárního modelu. Takto získaný popis
nabízí větší variabilitu struktury modelu než klasický popis, což umožňuje přesněji popsat dynamiku
systému. Na druhou stranu, analýza dynamiky modelů s dopravním zpožděním a syntéza řízení je zpravidla
složitější než u klasického přístupu. Typickou vlastností modelů s dopravním zpožděním je nekonečné
spektrum vlastních hodnot (pólů a nul) systému. V této práci je navržena metoda analýzy dynamiky systémů
s dopravním zpožděním na základě znalosti spekter pólů a nul systému. Pro výpočet pólů a nul je navržen
původní algoritmus založený na mapování charakteristických funkcí systému. Důležitost jednotlivý pólů je
posuzována na základě váhových funkcí přenosů prvního a druhého řádu které jsou získány rozložením
přenosu systému použitím Heavisideovy věty o rozkladu. Tímto způsobem je možné definovat skupinu pólů
které hrají v dynamice systému rozhodující roli. Určení dominantních pólů systému umožňuje nejenom
analyzovat módy systému, ale také dynamiku systému výhodně změnit přesunutím těchto dominantních
pólů. I u systémů s dopravním zpožděním je možné dynamiku změnit zavedením zpětných vazeb od
stavových proměnných systému. Na druhou stranu je nutné podotknout že touto metodou můžeme umístit
pouze malou část spektra pólů (uvažujeme-li koeficientové zpětné vazby). V této práci je proveden rozbor
této metody řízení při aplikaci na systémy s dopravním zpožděním a je předložena metoda efektivního
návrhu zpětných vazeb. Snadná aplikovatelnost metody pro analýzu dynamiky systému s dopravním
zpožděním a efektivnost návrhu koeficientů zpětných vazeb od stavových veličin přesunutím dominantních
pólů jsou ukázány v aplikačním příkladu kde analyzovaným systémem je laboratorní tepelná soustava.

ABSTRACT
The classical approach used in modelling of the real plant dynamics in the field of control engineering

is based on the linear model. Since the dynamics of the real plants are non-linear as a rule, the linear model
fits the dynamics of the plant only in a vicinity of the operational point at which the system has been
identified. The linear model is easy to handle and the control design is easy to perform using a method
available for this class of systems (models). Its main drawback is given by the fact that the only dynamical
elements of the model are the integrators representing the point accumulations. Thus, using this modeling
approach, it is difficult to fit the dynamics of plants with the distributed parameters or with the transportation
phenomenon involved. Much better results in modeling of this class of systems are achieved by involving
the time delays in the structure of the model. Such a model with more variable structure (called time delay
system) provides the opportunity to fit better the plant dynamics than delay free linear model. On the other
hand, the analysis of the dynamics of time delay system and the control synthesis is more complicated as a
rule. The typical features of time delay systems are the infinite spectra of poles and zeros. In this thesis, the
methodology for analyzing the dynamics of time delay system is introduced based on the knowledge of the
significant parts of the spectra of poles and zeros. An original algorithm for computing poles and zeros of the
system with delays is designed based on the mapping the characteristic functions of the system. The
significance of the poles is evaluated on the basis of the weighting functions corresponding to the first and
second order transfer functions resulting from applying the generalized Heaviside expansion to the transfer
function of time delay system. In this way, it is possible to define a group of the dynamics determining
poles.  Assessing the group of the most significant poles allows not only the modes to be analyzed but also
the dynamics to be positively changed by shifting these poles into more favorable positions. In the same way
as in the case of classical delay free systems, this shifting of the poles can be accomplished using the
coefficient feedback loops from the state variables. However, using this pole placement method, only few
poles can be prescribed while the rest of infinitely many poles are placed spontaneously. In this thesis, the
features of the pole placement method using the coefficient feedback loops from the state variables applied
to time delay systems are investigated and an effective method for feedback design is presented. In order to
demonstrate that the method for analyzing the dynamics of systems with time delays and the extension of
pole placement method described in this thesis are easily applicable, an application example, in which the
system being analyzed is a laboratory heating system, is included in the end of this thesis.
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1

1. INTRODUCTION, THE ACTUAL STATE OF RESEARCH AND THE THEORETICAL
BACKGROUND OF TIME DELAY SYSTEMS

Time delay systems (TDS) provide an alternative way for building the models of real plants to the
classical system description given by a set of ordinary differential equations. Besides the integrators,
involving the delays as the other dynamical elements brings about favourable features in fitting real plant
dynamics. On the other hand, the functionality of the system matrices (considering the linear models) results
in infinite spectra of the system poles and zeros. This inconvenient feature of time delay systems cause
difficulties in the analysis and control design of TDS.

First of all, let us briefly outline some of the literature sources of the theory of TDS. Already in
Myshkis, (1949) the theory of a general class of differential equations with delayed arguments has been
introduced. From the further books, the monographs of Krasovski (1963), Bellman and Cooke (1963),
El'sgol'c and Norkin (1971), Hale (1977) are the fundamental sources of the knowledge in the field of time
delay systems. From the more recent monographs dealing with this subject, let us mention Kolmanovski and
Nosov (1986) (stability, application examples), Górecki, et al, (1989) (analysis and synthesis) and
Diekman, et al., (1995) (operator theory approach). The recent comprehensive introductions are
(Kolmanovski and Myshkis, 1992) or (Hale and Verduym Lunel, 1993).

Time delay systems belong to the class of infinite dimensional systems (Bensoussan, et al, 1993). The
modelling approach using time delays is largely used to describe propagation and transport phenomena,
which can be met in the applications throughout the fields of mechanical, chemical and electrical
engineering. Other typical areas of the application of time delay systems are populations dynamics and the
economics. There are several approaches to describe TDS as the infinite dimensional system. Regarding the
practical point of view, in this thesis, the description based on linear functional differential equations is used
(Górecki, et al., 1989), (Hale and Verduym Lunel, 1993). Using the Stieltjes integrals, a general form of the
TDS description is considered in the form

)()(,)()()()()()(
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where x∈Rn is the vector of state variables, u∈Rm is the vector of system inputs, y∈Rp is the vector of
system outputs, A(τ), B(τ), Hi, C are the matrices of compatible dimensions, TN <<<< ηηη ...21  and τ is
delay variable. The distribution functions of the delays are involved in the functional matrices A(τ), B(τ).
Description of TDS based on the use of the Stieltjes integrals is the basic modelling approach known as
anisochronic approach, see Zítek, (1983, 1997, 1998). Functional description (1) acquires more convenient
form after applying the Laplace transform (considering zero initial conditions) 
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Since also the derivations of the state variables are delayed in (1), the model is in the form of neutral system.
If Nii ,..,2,1, == 0H , model (1) is called retarded system. Note that the vector of state variables does not
represent state of TDS (1). In fact, the state of system (1) is given by the function segments of the system
state variables and the system inputs },{ tt ux  on the segment of the last system history, see, e.g.,
Górecki, et al., (1989), Zítek, (1998) where

0)()(),()( ≤≤−+=+= τττττ Ttt tt ux ux (3)

and the state space is the Banach space of continuous real functions on the interval of length T,
)],0,([ nTC R−=C , see Hale and Verduyn Lunel, (1993). If the subject of the analysis is the investigation

of the homogeneous system dynamics, e.g., distribution of the system poles, it is convenient to analyse the
dynamics of autonomous system (the system inputs are omitted). It allows the abstract operator theory to be
used in the analysis, e.g., the semigroup approach, see, Diekman, et al., (1995), Hale and Verduym Lunel,
(1993). Let us consider the autonomous retarded system
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The state of autonomous system (4) given by tx  is uniquely determined by the initial condition function ϕ,
i.e. state at t = 0, by the solution operator, thus

C∈= ϕϕ ,)( tt xT  (5)

Operator )(tT , maps the initial state ϕ  at time zero to tx . Family T is called the strongly continuous
semigroup, which is given by the translation along the solutions of (4). Description (5) can be rewritten into

ϕ=>= 0,0, xxx t
dt
d

tt A (6)

where A is generator of the semigroup. The mutual relationship between )(tT  and A is given by
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As will be shown later, discretizing either )(tT  or A is one possible way to compute the
approximations of the poles of retarded systems. The notion of poles and zeros of TDS is identical as in the
case of delay free models. The only difference is that due to the functionality of the matrix A(s) and
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i ii ss ηHH , the spectrum of poles is infinite. Also the spectrum of zeros may be infinite,

depending on the model structure. Let system (2) is transformed into the form of transfer matrix
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The system poles, which are common for all the transfer functions in G(s), are given as the solutions of
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on the other hand, each of )(/)(, sMsNG kllk = has its own set of zeros given as the solutions of

[ ] mlpksssssN l

N

i
kikkl ..1,..1,0)()()exp((adj)(

1
===












−−−= ∑

=
BAHIC η (10)

where Ck is the row sub-matrix of C corresponding to the kth output and Bl(s) is the column sub-matrix
(vector) corresponding to the lth input. Note that both M(s) and N(s) are quasipolynomials.

The features of the spectrum of the poles depend on the character of the system. If the system is
retarded, the number of poles with real parts greater than α∈R is always finite. This convenient feature
implies that number of unstable poles (the poles located to the right from the stability boundary) is always
finite. The poles are distributed in asymptotic chains with the following features. Let all the poles of system
(8) be ordered in a sequence λ1, λ2, .... , λk with respect to their magnitudes, then |λk|→∞ and Re(λk) → -∞ as
k→∞. If the system is neutral, the pole spectrum has very different features. First, the distribution of poles is
determined by the essential spectrum of the system. The essential spectrum, i.e., the eigenvalue spectrum of
the difference equation associated with the neutral system, is given as the solutions of the following equation
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The features of the root spectrum kυ  of the exponential polynomial D(s) have been investigated, e. g., by
Avelar and Hale, (1980). First, there exist α∈R and β∈R such that ∞=<< ,....,2,1,)Re( kk βυα , i.e., the
roots of (11) are distributed in a vertical strip. Also in the pole spectrum of a neutral system there exists a
sequence of poles λk such that |λk|→∞ as k→∞. There also exists a sequence υk of roots of (11) such that
(λk-υk) →0 as k→∞. Thus, if there are υk located on the right half of the complex plane, the neutral is not
only unstable, but it is unstable with infinitely many poles. If the system is retarded, the system poles, i.e.,
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the roots of the characteristic equation are the eigenvalues of the matrix A(s) and of the generator A. The
poles of retarded system are also related to the eigenvalues zi of the solution operator )(tT  by the relation

)exp( tz ii λ= , i = 1,2,...   (12)

Since as well A as )(tT  may be discretized using a numerical method, which provides finite order discrete
system, the approximation of the rightmost poles can be computed as the eigenvalues of the discretized
system. First, let us consider the discrete state of the system given as the samples of x(t) on the last system
history with the time spacing determined by the sampling period h

[ ]T
HkHkkkk −+−−= xxxx ,....,, 11,x (13)

where k is the discrete time and H is determined by the maximum delay of the system and the order of the
numerical method used for the discretization. The system state at k+1 is given by

kk xx Φ=+1 (14)

which is the discrete form of

tht h xx )(T=+ (15)

where Φ∈R(H+1)n×(H+1)n is the discrete approximation of )(tT . Therefore, the approximations of the rightmost
poles of retarded system are obtained as the rightmost eigenvalues of Φ transformed into s-plane on the basis
of (12). Analogously, also discrete form of (6) can be obtained as

khkdt
d xx A= (16)

where Ah is the discretized form of A. The method of computing the approximate values of the rightmost
poles based on discretization of the solution operator using linear multi-step methods has been worked out
by Engelborghs and Roose (1999), Engelborghs, et al, (2000), see also Engelborghs and Roose (2002) and
the manual of the DDE-Biftool, (Engelborghs, et al, 2001, the Matlab package for bifurcation analysis of
delay differential equations). The other approach, i.e., computing the approximations by means of
discretizing the generator A has been solved by Ford and Wulf, (1988), Wulf and Ford, (2000), see also
Breda, et al., (2001).

 On the basis of the spectrum of poles of TDS, we can investigate the system dynamics through the
analysis of the modes of the system. The motivation is to define the most significant poles of the system
(even though the system has infinitely many poles, only few of them are decisive in the system dynamics)
and decide whether or not their positions imply favourable features of the modes of the dynamics. If it is not
so, the distribution of the poles, i.e., the system dynamics, may be changed by introducing the feedback
loops from the state variables

)(tu Kx−= (17)
The features of the extension of classical state feedback design by the gain coefficient feedback to the

class of TDS has been studied by Zítek, (1997, 1998), Zítek and Vyhlídal, (2000, 2002). The idea of
applying such a pole assignment consists in selecting system poles nii ..1, =σ  to be assigned in order to
stabilize or improve the dynamics of TDS. The gain coefficients K1, K2, ... , Kn are then computed from the
set of equations

niKKKM ni ..1,0),...,,,( 21 ==σ (18)

where ))()(det(),( KBAIK ssssM +−= . Since only n poles can be assigned, while the other poles are
placed spontaneously, the resultant spectrum must always be investigated before applying the computed
gains. If any of the non-prescribed poles become dominant with unfavourable positions, the prescription
procedure has to be repeated. Even though the method is rather heuristic, it has proved to be a valuable tool
for control design of TDS. An automatic pole placement procedure has been worked out by
Michiels, et al., (2002). The method is designed to stabilize the system dynamics by shifting the rightmost
poles as far to the left as possible applying small changes in the gain coefficients. If coefficient feedback
(17) is not sufficient to stabilize the system dynamics, a functional feedback may be used, see, e.g.,
Zítek, et al., (2001) which allows the spectrum of poles to be modified more freely. On the other hand, from
the application point of view, the functional feedback is not so convenient (easy to implement) as gain
feedback (17).
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2. OBJECTIVES OF THE THESIS
The main topics of this thesis are the frequency domain based analysis and pole placement control

design of time delay systems. Particularly, the stress will be laid on the methods of synthesis and control
design based on the knowledge of the dominant part of the spectrum of the system poles and zeros. As has
been mentioned in chapter 1, the applicability of the available algorithms is often restricted on a narrow class
of systems. For example, the method for computing the approximations of the rightmost poles using either
the discretization of the infinitesimal generator of the semigroup or the discretization of the solution operator
can be applied only to retarded systems, preferably with the lumped delays. The distribution of the poles in
the complex plane determines the stability and the modes of the dynamics. However, the distribution as such
is not decisive in determining the significance of the modes of the dynamics. The significance of the modes
is also determined by the distribution of the system zeros. Thus, not only the distribution of the system poles
but also the distribution of the system zeros should be known to evaluate completely the system dynamics.

• Objective 1. The primary task of this thesis is to develop an algorithm for computing both the poles and
zeros of TDS located in a chosen region of the complex plane. The algorithm should provide the
possibility to solve the task for large class of systems, both retarded and neutral. Considering that both
the system poles and zeros are the solutions of the quasipolynomial equations, the algorithm is to be
based on computing the roots of quasipolynomials. Since the quasipolynomials (as well as polynomials)
tend to be ill-conditioned as their degree increase, the robustness of the algorithm is to be investigated.
The result of the investigation should be the definition of the class of TDS for which the algorithm may
be used. This task of the thesis is the most important one. The other tasks are chosen in order to verify
the features of the algorithm that will be designed.

• Objective 2. The modeling approach involving the delays allows the real plants to be described by
considerably lower order models (if the order is considered as the number of differential equations) than
if an modeling approach based on the delay free models is used. Thus, the second task to be solved in
this thesis is the investigation of the features of the low order models as the basic element units in
building the plant model. The investigation should result in the mapping of the distribution of the poles
and zeros of the low order anisochronic model. The other result of this part of the thesis should be the
choice of the suitable structure of the low order anisochronic model able to fit the dynamics of a wide
class of the real plants.

• Objective 3. The third task is motivated by the fact that the evaluation of the significance of the poles in
the infinite spectra based on evaluating the distances of the poles from the stability boundary, which is
mostly used to evaluate the significance of the poles, is sufficient only if the stability of the system is
evaluated. If the character of the system input-output dynamics is to be evaluated, the criterion is
insufficient. The objective is to define a group of system poles (from the infinite spectrum) that
determine the system input-output dynamics. Therefore, I am going to try and find the criterion that will
truly evaluate the significance of the system poles.

• Objective 4. In section 1.3 I have explained some of the methods for control design of TDS. As the last
objective of the thesis, the methods based on the pole placement using the proportional feedback from
the state variables are to be investigated. The stress should to be laid on comparing the method based on
the direct prescription of the poles with the method known as continuous pole placement. Both the
control feedback design methods let also be extended to the class of neutral systems. As the result of this
part of the thesis, the suitable strategy for pole placement applied to TDS is to be proposed.

In order to summarize the contributions that will be achieved in this thesis and to demonstrate the
applicability of the methods that will be developed, the methods are to be applied for analyzing the dynamics
of a real (laboratory) plant application. The control methods based on the continuous and the direct pole
placement are to be applied to control the plant.

3. ALGORITHMS FOR COMPUTING QUASIPOLYNOMIAL ROOTS
First, let us briefly mention some of the methods used to compute the roots of polynomials. There

exists a great deal of methods to solve this task. The algorithms may be roughly classified either as iterative
algorithms (theoretically incomplete), e.g., MP-solve (Bini and Fiorentino, 2000), Eigensolve (Fortune,
2001)), or as theoretically complete, e.g., Weyl's algorithm (Pan, 1997). Most of the former mentioned
algorithms are based on computing the eigenvalues of polynomial companion matrix. Since the
quasipolynomial companion matrix is functional, using analogous approach to compute the roots of
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quasipolynomials is not convenient since to compute
the approximation of the poles of the functional matrix
is a quite difficult task as well. On the other hand
Weyl's algorithm based on searching a part of the
complex plane can be modified for computing the
polynomial roots located in a (suspect) region of the
complex plane. The main idea of the algorithm is as
follows. On the complex plane, the search for
 the roots starts with an initial suspect region

],[],[ maxminmaxmin ωωββ ×=D , containing all the
polynomial roots. Then the region is partitioned into
four congruent subregions. At the centre of each of
them, the proximity test is performed (Henrici, 1974),
i.e., a distance of the closest root from the centre is
estimated.  If this distance exceeds the length of the
diagonal of the subregion then the subregion does not
contain any roots and is discarded. If the result is
opposite, the subregion is called suspect and undergoes
the same recursive process of partitioning into four
subregions. In this way, the algorithm is performed
recursively until a desired accuracy of the roots is
achieved.

The first algorithm for computing a part of the root spectrum of quasipolynomials I present is a
modification of Weyl's construction. The modification consists in using the argument principle based test
instead of the proximity test. Argument principle holds for any analytic function including quasipolynomials
(El'sgol'ts and Norkin, 1971). Let D is a domain in the complex plane whose boundary ϕ is a closed Jordan
curve. Let G(s)∈C is a meromorphic function, i.e., a single valued analytic function that has no singular
points beside poles. Then
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where DN  is the total number of zeros of the function G in D, DP  is the total number of poles of the
function G in D, both counting their multiplicities and dssdGsG /)()( =′ .

Consider the quasipolynomial of the form
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where )(sQi , i=1..n are the functions involving the terms corresponding to the distribution of the system
delays.  Obviously, quasipolynomial (20) does not have any poles, i.e., 0=DP , thus, the result obtained
from applying the argument principle is the number of zeros in the particular region. The algorithm using the
Weyl's construction combined with the argument principle based test is quite reliable. On the other hand, if
the suspect region is large or there are many roots in the suspect region, the algorithm is rather cumbersome.

The second algorithm I present in the thesis is original, based on the mapping the quasipolynomial
function in the complex plane. The quasipolynomial M(s) as a function of the complex variable s = β + jω
can be split into real and imaginary parts

),(j),(),( ωβωβωβ IRM += (21)

where R(β,ω) = Re{M (β,ω)} and I(β,ω) = Im{M (β,ω)}. Consequently, equation M(s) can be split into

0),(,0),( == ωβωβ IR (22)

From the geometric point of view, the roots of M(s) are the intersection points of the curves described by the
implicit functions R(β,ω) = 0 and I(β,ω) = 0. Mapping the surfaces R(β,ω) and I(β,ω) on the region

],[],[ maxminmaxmin ωωββ ×=D , the equipotential contours are given by the intersections of the surfaces

Fig.1 Locating the roots by Weyl's algorithm
asterisks - quasipolynomial roots,

     black dots - approximations of the roots
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with the s-plane. Taking into account this geometric interpretation the M(s) mapping based rootfinder can be
summarized as follows:

Algorithm 1 Mapping based rootfinder

1 The region ],[],[ maxminmaxmin ωωββ ×=D , where the roots of
M(s) are to be computed, is defined.

2 With a chosen increment ∆s, the region D  is covered
by the grid of nodes dij=βj×ωi, i =1.. |ωmax-ωmin|/∆s,
 j = 1.. |βmax-βmin|/∆s with stepwise incrementing co-ordinates β
and ω.

3 For each node dij, the values of R(βi,ωj) and I(βi,ωj) are
computed.

4 Using an contour plotting algorithm, the intersections of the
surfaces R and I with the s-plane, i.e., contours 0),( =ωβR
and 0),( =ωβI , are mapped.

5 The intersection points of the contours 0),( =ωβR and
0),( =ωβI indicate the approximate positions of the poles.

6 The accuracy of the root approximations is enhanced by means
of Newton's iteration method.

Since the contours R(β,ω) = 0 and I(β,ω) = 0 can be obtained analytically only for the most trivial
quasipolynomials, e.g., )exp()( sssM −+= , a numerical algorithm has to be used for that purpose. For
mapping the contours, the algorithm known as level curve tracing algorithm, see, e.g.,
Cottafava and Le Moli, (1969), is used, which is available in Matlab as the function contour. Using this
function, I have programmed function aroots (in Matlab) acomplishing Algorithm 1. The mapping based
rootfinder may be used to compute both the poles and zeros of both retarded and neutral system with lumped
and distributed delays, i.e., to compute the roots of quasipolynomial. Obviously, the algorithm can also be
used to compute the roots of low degree polynomials and also the roots of exponential polynomials (which
determine the essential spectrum of the neutral equations). In fact, the class of functions whose roots can be
computed using the rootfinder is broader. Since the subject solved in this thesis deals with the analysis of
TDS, the applicability of the mapping based rootfinder to further functions is not investigated. The
applicability of the mapping based rootfinder is limited to the well-conditioned functions, (Wilkinson, 1984),
which rather bounds the maximum degree of the (quasi)polynomials which can be analysed using the
rootfinder (let us say up to degree 20). On the other hand, the anisochronic approach provides low order
models of real plants as a rule. Thus the mapping based rootfinder is very valuable tool in the analysis of the
dynamics of TDS.

4. APPLICATION OF MAPPING BASED ROOTFINDER IN ANALYSIS AND SYNTHESIS OF
TIME DELAY SYSTEMS

In this chapter, the other three objectives are solved. Most of the methods designed in this chapter are
based on the designed mapping based rootfinder given by Algorithm 1.

4.1 Features of first order anisochronic model with two delays
First, the features of the anisochronic first order model with two delays, given by transfer function

)exp(
)exp(

)(
)()(

η
τ
sTs

sK
su
sysG

−+
−

== (23)

where K is steady state gain, T is time constant and τ is input time delay and  η is the state delay are
investigated. Thanks to its anisochronic structure, model (23) is quite universal and can be used to describe
real plants which are usually described by higher order models, see, e.g., Vyhlídal and Zítek, (2001). In
order to investigate the dynamics of (23), using the mapping based rootfinder, the positions of the dominant
poles of (23) with respect to the values of the denominator parameters has been mapped, see Fig. 3.

Fig 2 The principle of locating
M(s) roots, R=Re(M)=0 - solid,
                   I=Im(M) = 0 - dashed
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Fig. 3 The trajectories of the dominant pair of poles of (23) with respect to the value of η=η/T,
ωβξ /=  ωβ j2,1 ±=s

As can be seen, the position of the dominant couple of poles of (23) is determined by the ratio η/T. For
)]1exp(,0(/ −∈Tη  the dynamics of (23) is determined by the couple of real poles (the dynamics is well

damped), while for )1exp(/ −>Tη  the couple of dominant poles is complex conjugate (the dynamics is
oscillatory with stable dynamics for )2/π),1exp((/ −∈Tη ). The stability boundary is attained for

2/π/ =Tη .  Although the model is described by a single functional differential equation, the possibility to
place the dominant couple of poles arbitrarily in the left half of the complex plane implies the universality of
the model. It allows describing the dynamics of quite broad class of systems with damped as well as
oscillatory dynamics. The universality of the first order anisochronic model can be further extended
involving an exponential polynomial into the numerator of the transfer function. Consider the model

 
)exp(

)exp())exp(1()(
η

τχ
sTs

ssaKsG
−+

−−−
= (24)

As has been shown, the dominant couple of poles of (24) can be placed arbitrarily in the left half of the
complex plane. By means of the parameters of the exponential polynomial )exp(1)( χsasN −−= , also the
dominant zero can be assigned to (24). Choosing the parameters a and χ, the positions of the zeros, i.e., roots

ωβ j+=s  of N(s) closest to the s-plane origin are given by

a
1ln1

χ
β −= (25)

0if,π/)12(
0if,π/2

<+±=
>±=

ak
ak

χω
χω

, k =0,1,2,... (26)

Thus, if a>0, the dominant zero of (24) is real given by (25) and if a<0, the dominant zero is complex
conjugate with the real part (25) and the imaginary part given by (26) with k=0. To sum up, model (24) can
be used to approximate the dynamics of the system by assigning the dominant pole and the dominant zero.
Taking into account that the system dead time may be approximated by the numerator input delay τ , model
(24) may be used to approximate the dynamics of a quite broad class of systems.
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4.2 Evaluation of the significance of the poles of TDS
The significance of the poles (in stable system dynamics) is usually evaluated with respect to their

distances from the imaginary axis, see e.g., Goodwin, (2001). Besides such a pole significance evaluation it
is also reasonable evaluate the poles with respect to their magnitudes. It is difficult to claim whether the
distance from the origin or the distance from the imaginary axis is more decisive in determining the
particular pole significance. In this section, according to the third objective of the thesis, an original method
for evaluating pole significance will be introduced based on the analysis of the modes of TDS.

Due to the generalized Heaviside series expansion, see, e.g., Angot, (1952), the transfer function G(s)
can be expanded into

∑∑∑
∞

=

∞

=

∞

=
=

−
=

−′
==

111
)()(1

)(
)(

)(
)()(

i
i

i i

i

ii i

i sH
s
R

sM
N

sM
sNsG

λ
λ

λλ
λ (27)

where )( iR λ  are the residues corresponding to the poles iλ , the functions N(s) and M(s) are the analytic
functions, e.g., quasipolynomials, and N(s)/M(s) has only single poles the number of which may be both
finite and infinite.

If expansion (27) is applied to the transfer function of TDS, the system is expanded into the sum of
infinitely many transfer functions, which can be either first order (corresponding to the real poles)

 
)(

)(
i

i
i s

R
sH

λ
λ

−
= (28)

or second order (corresponding to the complex conjugate poles)

222
RRR

1

11
1,

2
)(2

))((
))(())(()(

iii

iiiii

ii

iiii
ii

ss
s

ss
sRsRsH

ωββ

ωωβββ
λλ

λλλλ
++−

−−
=

−−
−+−

=
+

++
+ (29)

where 1+iλ denotes here the complex conjugate pole to iλ  and iiiiR RR1, j)( ωβλ ±=+  (for complex
conjugate 1, +iiλ ) . Applying the inverse Laplace transform to (27), we obtain the weighting function of TDS
as the sum of the infinitely many weighting functions of either (28) or (29). Evaluating the contribution of a
particular weighting function to the weighting function of TDS may be used to evaluate the significance of
the mode in the system dynamics. Performing the inverse Laplace transform to transfer functions (28) and
(29), respectively, we obtain the weighting functions of the modes

)exp()()( tRth iii λλ= (30)

if iλ  are real poles and

))sin()exp()cos()exp((2)( R,R,1, ttttth iiiiiiii ωβωωββ −=+ (31)

if 1, +iiλ  are the complex conjugate pairs of poles, respectively. The significance evaluating criterion I
suggest is based on evaluating the difference between the minimum and maximum of the weighting function

{ } complex is  if)()(,)()0(max

real is  if)(

1e0e0ee

e

minmaxe

iiiiii

iii

iii

thththhh

Rh

hhh

λ

λλ

−−=

=

−=

(32)

where ωπ /e += itt , k=0,1, 2, ..., are times at which )(1, th ii +  achieve the extrema given as the solutions of
the equation

iiii

iiii
it βωωβ

ωωββ
ω

RR

RR)tan(
+
−

= (33)

obtained from evaluating the first derivation of (31).  The criterion is reliable and provides reliable
evaluation of the pole significance of the distinct poles. However, if there are two poles in the spectrum that
are very close to each other, the significance of the couple is to be evaluated instead of evaluating each pole
separately. This rule is implied by the fact that as the poles are close to each other, their residues become
very large (but with of the opposite signs). Thus if evaluated separately, criterion (32) unmatches the real
significance of the poles. Their significance is evaluated as much higher than it really is.
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Fig. 4 The evaluating criteria of the significance of the dominant couple of poles of system (23)

However, if evaluated as a couple the weighting functions which are summed and the resultant weighting
function is comparable with the weighting functions corresponding to the other poles. In Fig. 4, this feature
is demonstrated on the evaluation of the poles of the system with the denominator )exp()( sssM −+= ,
(compare with the values of the poles seen in Fig. 3). As can be seen, only 2,1eh  truly evaluates the
contribution of the couple to the system dynamics.

According to the fact that Heaviside expansion (27) can be performed only if the poles are distinct, the
criterion I have suggested cannot be directly used to evaluate the significance of multiple poles. The possible
way of evaluating the contribution of a multiple pole to the dynamics consists in the following procedure.
First, let the zero with the same multiplicity and the same value as the multiple pole be introduced into the
numerator of the transfer function. Thus, the multiple pole is compensated. Secondly, let the compensated
multiple pole be substituted by a group of distinct poles (the number of which is equal to the multiplicity of
the pole) whose values are close to the value of the multiple pole. Finally, let the contribution of this group
of poles is evaluated. If the poles that substitute the multiple pole are close to its value, their contribution to
the dynamics is very close to the contribution of the multiple pole and the value of the criterion truly
evaluates the significance of the multiple pole.

4.3 Gradient based state variable feedback control
In this section the main ideas of control method of TDS based on state variable feedback control are

outlined and the features of the method are investigated. Consider coefficient feedback from the state
variables (17) to control a retarded TDS. The characteristic equation of the feedback system is as follows

[ ] 0)()(det),( =+−= KBAIK ssssM (34)
Suppose the original spectrum of poles, i.e., the eigenvalues of the system matrix )(sA , is

{ } ∞== ..1,))((Sp is iλA  and the characteristic quasipolynomial of the original system is

)](det[)(0 sssM AI −= (35)

Closing feedback (17), the characteristic quasipolynomial of the system changes from (35) to the form of
(34) with the new spectrum { } ∞==− ..1,))()((Sp iss iσKBA . Since quasipolynomial (34) is linear with
respect to K (Zítek and Vyhlídal, 2002), the following relationship holds between the original )(0 sM  and
the feedback system quasipolynomial ),( KsM

j

n

j j
K

K
sMsMsM ∑

= ∂
∂

+=
1

0
),()(),( KK   (36)
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Consider the original system has undesirable dynamics, i.e., the group of the most significant poles of
the original system brings about too slow or less damped character of the dynamics. The aim of introducing
the feedback from the state variables is to place the most significant system poles into the prescribed new
positions ,...2,1, == is iσ , ni ≤max  (n is system order), which are chosen to endow the system with more
favourable dynamics. For any prescription of iσ  the following relationship holds

is

r

j j
jii K

sMKMM
σ

σσ
==

∑












∂
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+==
1

0
),()(0),( KK (37)

i.e., a set of linear algebraic equations with the unknown parameters nKKK ,...,, 21 . In fact, equations (37)
corresponds only to the prescribed real poles iσ . If a prescribed pole is complex iii ωβσ j+= , equation
(37) has to be split into two equations 0)),(Re( =KiM σ and 0)),(Im( =KiM σ . Evaluating the partial
derivatives in (37) and substituting the prescribed poles into the equations, the following system of equations
results

mSK =   (38)
rR∈K ( nr ≤ ), rq×∈ RS  and qR∈m ( nq ≤ ) where
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where r..1 qk = , rq  is the number of prescribed real poles, c..1 ql = , cq  is the number of prescribed
imaginary poles, cr 2qqq += , and j=1..r, r is the number of feedback loops from the state variables.

Obviously, the maximum number of the poles that might be prescribed using the state variable
feedback control is equal to the number of the state variables, i.e., to the system order n. Thus, having q = n,
the system of equations (38) may be solved as mSK 1−=  if the matrix S is non-sigular. However, more
numerically stable techniques of solving system of equation (38) are the iterative methods, e.g.,
Gauss-Seidel method.

In general, there may be less than n significant poles with undesirable positions in the spectra of the
original system. Provided that the other poles are much farther to the left from the imaginary axis, it is
reasonable to prescribe new positions only to these poles with undesirable positions. One possibility to solve
the task for q < n consists in using only r = q feedback loops, which reduce the problem to solving set of
equations (38). Another possibility, which is likely to result in more robust dynamics of the feedback system,
consists in using all the feedback loops which are available. To obtain the feedback coefficients, set of
underdetermined equations (4.68), r>q, is to be solved. Using the Moore-Penrose inverse +S of S
(Ben-Israeland Greville, 1977), the feedback coefficients are given by

 mSK += (41)
The Moore-Penrose generalized matrix inverse is a unique matrix pseudoinverse, which provides the
solution with the minimal norm 2|||| K .  Apparently the desired eigenvalue positions are to be prescribed
with respect to ,...2,1, =iiλ  constituting the group of the most significant system poles. It is of little sense to
assign the insignificant system poles because they cannot affect the actual system behaviour. The crucial
problem of pole assignment in TDS is the following. Although equation set (41) may be solved for arbitrary
set of given nii ,...,2,1, =σ , in fact the region where these prescribed values may be taken from is rather
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restricted. Obviously, the prescribed nii ,...,2,1, =σ  have to correspond to the eigenvalues iλ  with the
largest values of the criterion ihe . Obviously, the set of n eigenvalues is only a little part of the whole
spectrum. Thus an infinite set of the rest of eigenvalues is placed spontaneously. To get the prescribed iσ
actually determining the system dynamics, it is necessary that the assigned eigenvalues constitute the set of
most significant poles of the system dynamics being designed. Basically, it means that iσ must not be
prescribed too fast, i.e. too far to the left with respect to the original positions of the poles. If such too fast
eigenvalue is prescribed, the consequence is that one or more of spontaneously placed eigenvalues takes
over the role of the significant poles in the new spectrum. Often such spontaneously placed pole causes the
instability of the system. To avoid safely the case of such a pole placement failure, it is necessary to try
repeatedly a sequence of the prescribed new positions of the dominant system poles of the stepwise
increasing sizes. The critical size of this shifting is when firstly a spontaneously placed dominant pole with
undesirable position appears.

An alternative approach to the direct pole placement is the continuous pole placement introduced by
Michiels, et al., (2002). Prescribing small shifting of the poles from the current positions, the increments of
the feedback gain coefficients in K∆  can be computed on the basis of the sensitivity matrix. As will be
shown, such a continuous shifting can also be performed using the gradient based feedback control design.
As has been shown, if the prescribed poles are complex, equation (35) has to be split into real and imaginary
parts. Substituting ωβ j+=s  into (35) yields

[ ] ),,(j),,()j()j()j(det)j( KKKBAI ωβωβωβωβωβωβ IRM +=+++−+=+ (42)

Prescribing only the real parts of the complex poles, i.e., iβ , we have the following equations

0),,( =KiiR ωβ (43)

0),,( =KiiI ωβ (44)

for each of the prescribed iβ  with the variables rKKK ...,,, 21 and iω  to be computed. Unlike equation (35),
equations (43) and (44) are linear neither with respect to rKKK ...,,, 21  nor with respect to iω  (since iω  are
considered as the unknown variables). This non-linearity has the inconvenient consequence of loosing the
possibility to place the poles arbitrarily. Consider, the actual setting of the feedback coefficients is K~ and the
complex poles iii ωβλ j+=  correspond to this setting. Suppose we displace the real parts of the poles

iii βββ ∆+→ , c...,,2,1 qi = ( cq  is the number of prescribed complex poles). Provided that iβ∆  are small,
approximate values of iω∆  and jK∆  can be obtained as the solutions of the following set of equations
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which result from linearizing (43) and (44), respectively. Thus, analogously to (38), we can write the system
of equations
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where r..1 qk = , rq  is the number of prescribed displacements of the real poles kσ , c..1 qk = , cq  is the
number of prescribed displacements of the complex poles, i.e., the real parts of the poles, cr qqq += , and
j=1..r, r is the number of feedback loops from the state variables. Thus prescribing the sufficiently small
displacements σ∆  from the current right-most poles kσ  and ll ωβ j+ , the feedback increments jK∆  and

the displacements in imaginary parts of the complex poles lω∆  can be computed from set of equations (47).
If qr =  the set of equations can be solved in a classical method for solving the linear system of equations. If

qr <  the underdetermined set of equations can be solved using the Moore-Penrose inversion

  mS
ω
K +=








∆
∆

(51)

Thus, analogously to the algorithm for continuous pole placement based on the sensitivity functions
introduced by Michiels, et al., (2002), we can write the algorithm for the rightmost pole shifting using
described gradient based pole placement method.

Algorithm 2 Continuous pole placement based on gradient based method
A. Start with 1=q
B. Compute the rightmost system poles using the mapping based rootfinder given by Algorithm 1
C. Assemble matrices (49) and (50) for system of equations (51)
D. Move q rightmost poles for which set of equations (51) has been assembled in direction to the left

and find solution of (51).
E. Monitor the positions of the rightmost poles of the system with the computed feedback settings. If

necessary, increase the number of controlled poles q. Stop when stability is reached or when the
available degrees of freedom of the controller do not allow sup(Re(λi)), ∞= ..1i  to be further
reduced. In the other case, go to step B.
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Unlike the continuous pole placement algorithm introduced in Michiels, et al., (2002), using the
method described above, we obtain not only the changes of the coefficients jK∆ but also the displacements

of the imaginary parts of the poles lω∆ which are shifted. This fact may be useful in the task of accelerating
the continuous pole placement procedure. It is also important to note that from the numerical stability point
of view, there should always be minimum distances between the neighbouring poles being controlled. If two
of these poles are too close to each other, equation (51) becomes ill-conditioned. In the limit case of two
controlled poles are identical, matrix (49) becomes singular. Even though the Moore-Penrose inversion of
such a singular matrix exists, Algorithm 2 is likely to brake down. Unlike the algorithm presented by
Michiels, et al., (2002), the gradient based feedback control offers the possibility to prescribe multiple poles.
However, from the numerical point of view, keeping the poles distinct is safer. Moreover, the applicability
of the Algorithm 2, as well as the direct pole placement, can be applied to a broader class of systems than the
algorithm suggested in Michiels, et al., (2002), i.e., to both retarded and neutral systems with both lumped
and distributed delays. On the other hand, since the continuous pole placement given by Algorithm 2 is
based on the characteristic function, its applicability is restricted to the lower order TDS.

5. REAL PLANT APPLICATION EXAMPLE
All the dynamics analysis and control design methods introduced or investigated in the thesis, i.e.,

mapping based rootfinder, pole significance evaluating criterion and the methods for pole placement, have
been tested on the model of laboratory plant heating system. The heating system (see its scheme in Fig. 5)
consists of two heating circuits with the circulation of the heat medium (water) accomplished by two pumps
(one in each circuit). The heat source of the system is an electric heater, located in the primary circuit. The
heat exchange between the two circuits, which is controlled by the mixing valve, takes place in the
multi-plate heating exchanger. The last important component of the system is an air-water cooler located in
the secondary circuit. As can be seen in Fig. 5, the components of the system are connected by the piping
lines that provide the most important delays in the system. Using the anisochronic approach, all the
substantial parts of the system have been described using the first order anisochronic model. In this way
obtained model is given by the following description

)()()()()( seth, ssssss ϑ∆+= BxAx  (52)

where [ ]Tsssss )()()()()( cdah ϑϑϑϑ ∆∆∆∆=x is the vector of the state variables, where
)(),(),(),( cdah ssss ϑϑϑϑ   are the temperatures measured on the laboratory system





























−−−

−−

−−−++−

−−−

=

c

c

c

cc
dd

dd
a

ea

a

a

a

a
h

bb

h

h

)exp()exp(00

01)exp(0

)exp())1(5.01(0))1(5.01(

00)exp()exp(

)(

T
s

T
sK

TT
sK

T
sqK

T
qK

T
K

T
sK

T
s

s

ητ

τ

τ

τη

A

T

h

uu 000)exp()( 






 −
=

T
Ks τB  , [ ]1000=C  ( )()( c tty ϑ= )

The parameters that assure a quite good approximation of the system step response performed in the vicinity
of the operational point for which the model is assumed to approximate the system dynamics are the
following: 14sh =T , 24.0b =K , 39.0u =K , s5.6h =η , s40b =τ , s2.13u =τ , 3sa =T , 1a =K ,

s13e =τ , 1=q  ( 21 mm = = 0.08 m3/hour), 3sd =T , 94.0d =K , s18d =τ , 25sc =T , 81.0c =K , s2.9c =η ,
s8.2c =τ .
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Fig. 5 Scheme of the state variable feedback control of the laboratory heating system

Having the linear model of the laboratory heating system in the form of retarded system, let us analyse
the modes of the system dynamics. First of all, let us transform model (52) into the form of the transfer
function

)exp(
)(
)()exp()()( f ττ s

sM
sNssGsG −=−=  (53)

According to (9) and (10) the numerator and denominator of (53) result in
51004.4 −=N  (54)

∑
=

+=
3

0

4 )()(
i

i
i ssQssM (55)

where )(sQi  are in the forms of sums of exponential functions and the input delay s34=τ . Since the
numerator part N of (54) is constant, the system does not have any zeros. The character of the input-output
dynamics is given only by poles of (53), i.e., the roots of M(s) given by (55). Using the quasipolynomial
mapping based rootfinder given by Algorithm 3.1, the spectrum of system poles can be seen in Fig. 6. In
Tab. 1, we can see the values of 34 system poles closest to the s-plane origin with the corresponding values
of the residues applied to expanded )(f sG  using (27). The poles are ordered with respect to their
significance that has been evaluated using criterion (32). As can be seen in Tab. 1, according to the criterion,
the most significant poles of the system are 2,1λ  and 3λ . Also the following two couples of poles, i.e., 5,4λ
and 7,6λ , may be considered as the significant according to the chosen criterion (but less significant
than 2,1λ  and 3λ ).



15

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Re(s )

Im
(s

 )

λ
3
 

λ
6
 

λ
8
 

λ
10

 

λ
13

 

λ
15

 

λ
17

 

λ
19

 

λ
21

 

λ
23

 

λ
25

 

λ
27

 

λ
29

 

λ
31

 

λ
33

 

λ
1
 

λ
4
 λ

12
 

Fig. 6 Mapping quasipolynomial (55), Re(M(s)) - solid,
Im(M(s)) - dashed. Roots of the quasipolynomial given as
the intersections of the contours.

Tab. 1 The poles of system (52) and the
values of the significance evaluating

criterion
i iλ [s-1] ihe
1
3
4
6
8
10
12
13
15
17
19
21
23
25
27
29
31
33

  -0.0316 + 0.1167j
  -0.0121
  -0.1083 + 0.0791j
  -0.0643 + 0.2553j
  -0.0951 + 0.4088j
  -0.1171 + 0.5648j
  -0.2125
  -0.1295 + 0.7197j
  -0.1327 + 0.8755j
  -0.1322 + 1.0311j
  -0.1347 + 1.1852j
  -0.1425 + 1.3400j
  -0.1521 + 1.4972j
  -0.1595 + 1.6553j
  -0.1630 + 1.8128j
  -0.1636 + 1.9692j
  -0.3288 + 0.8097j
  -0.3979 + 1.5064j

  4.921 10-3

  3.801 10-3

  7.928 10-4

  3.817 10-4

  5.170 10-5

  1.443 10-5

  9.317 10-6

  7.607 10-6

  4.858 10-6

  2.675 10-6

  1.602 10-6

  1.038 10-6

  6.934 10-7

  4.133 10-7

  2.687 10-7

  2.190 10-7

  5.906 10-9

  1.172 10-10

In Fig. 7 we can see the step responses of )(f sG  and the step responses of the transfer functions
corresponding to the modes of the system )(2,1 sH , )(3 sH , )(5,4 sH and )(7,6 sH . As can be seen in Fig. 7,
the correspondence of the step responses of )(f sG  and )()( 32,1 sHsH +  confirms the determining roles of
the poles 2,1λ  and 3λ  in the system dynamics.
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Fig. 7 Step responses of the system given by transfer function )(f sG , see (53), and of the transfer functions

)(sHi  and their sums approximating )(f sG . C1)1(seth,
o=∆ϑ
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The second task solved in this chapter is the control design of the system output temperature )(c tϑ  using the
feedback loops from the state variables. In order to ascertain zero control error at the steady states of the
feedback system, the additional state variable is introduced

)()()(
csetc, tt

dt
tdI ϑϑ ∆−∆= (56)

where )(setc, tϑ  is the set-point (desired) value of )(c tϑ . Thus the feedback control is accomplished by

[ ]Tcdah54321seth, )()()()()(][)( tIttttKKKKKt ϑϑϑϑϑ ∆∆∆∆−=∆ (57)

Since (52) and (56) are in a series linkage, additional state equation introduces only a single pole to the
system dynamics located in the s-plane origin 035 =λ  s-1. First, in order to move the rightmost poles as to
the left as possible, the continuous pole placement method given by Algorithm 2 is applied. The result of
continuous shifting of the rightmost poles to the left is seen in Fig. 8. As can be seen, first, only the pole 35λ
is being shifted. Gradually, the number of poles that are shifted is increased up to five, keeping the distances
between the poles to assure the robust numerical computation (the number of controlled poles
cannot be higher than the number of feedback loops). The pole placement procedure stops as the
five poles being controlled get close to another pole. The resultant feedback gains
(the evolution of the gains during the continuous pole placement procedure is seen in Fig. 9)
are the following [ ]0.119-   3.348    3.181    1.101    0.245=K  corresponding to the rightmost poles

-1
35 s0413.0−=λ , -1

3 s0502.0−=λ , -1
12 s0594.0−=λ , -1

2,1 s  0.1278j  -0.0683 ±=λ .
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Fig. 8 The evolution of the real parts of the poles during the continuous pole placement given by
Algorithm 2 applied to laboratory plant model given by (52)
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Fig. 9 The evolution of the feedback gains during the continuous pole placement

Since three of the poles are real, the dynamics of the system are rather overdamped. Thus, to further improve
the system dynamics (following the requirement to achieve well damped and fast dynamics) the direct pole
placement method is applied. The results of the procedure of direct prescribing the poles are seen in Tab. 2.
For the comparison of the set-point responses with the designed feedback settings see Fig. 10

Tab. 2 Sets of prescribed system poles and the resultant feedback gains
k Prescribed roots [s-1] kK
1
2
3

072.05 −×
j06.003.0,07.03 +−−×

j)06.003.0(2,07.0 +−×−
c.p.p

[ ]0.159- 3.871 3.841 2.028 0.277
[ ]0.225- 4.513 5.523 2.230 0.263
[ ]0.352- 4.576 7.690 4.091 0.298-
[ ]0.119-   3.348    3.181    1.101    0.245
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Fig. 10 Comparison of the set-point responses of the laboratory system with the feedback from the state
variables with various settings of the feedback coefficients, c.p.p. - the feedback coefficients resulted from

the continuous pole placement, k = 1, 2, 3, the feedback coefficient settings according to Tab. 2
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As has been shown, using continuous pole
placement method to shift the poles as
much to the left as possible is convenient.
Even though the feedback system
dynamics given as the result of the
continuous pole placement is not optimal
as a rule, it provides very good starting
pole distribution for applying direct pole
placement. It would be very difficult to
achieve the adequately good result starting
the direct prescribing the poles from the
pole distribution of the system without the
feedback, seen Fig. 6.
In Fig. 12, we can see the comparison of
the simulated set-point response of the
model with the set-point response
performed and measured on the laboratory
heating system with the coefficient
feedback gains taken from Tab. 2, k=3. The
distribution of the dominant poles of the
feedback system with this setting are seen
in Fig. 11. Even though the parameters of
the model of the heating system has been
identified only on the basis of one
measured step response performed in the
operational point, the set-point response
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Fig. 11 Poles of the closed feedback system with the feedback
coefficients, seen in Tab. 2, k = 3

performed in the vicinity of the operational point is very close to the simulated set-point response. As can be
seen, not only the dynamics of the system output temperature is modelled well, but also the responses of the
other temperatures show very good equivalence between the model and the system dynamics in the vicinity
of the operational point for which the linear plant anisochronic model is valid.
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Fig. 12 Comparison of the simulated and the measured set-point responses of the laboratory heating system,
feedback coefficients seen in Tab. 2, k = 3, smooth - simulated responses,

influanced by noise - measured responses
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6. SUMMARY OF CONTRIBUTIONS, CONCLUSIONS AND FURTHER DIRECTIONS

This thesis provides several contributions to the analysis and control synthesis of linear time delay
systems (TDS). The first objective of this thesis, i.e., the design of the algorithm for computing the roots
of the quasipolynomials, has been solved in chapter 3, where I introduced two algorithms for computing the
roots of quasipolynomials. The first algorithm is based on the extension of Weyl's construction using
the argument principle for computing the number of poles in a particular suspect region of the complex
plane (the region in which we suspect some roots being located). The second algorithm is based on
mapping the quasipolynomial in the complex plane. The algorithm is original, based on constructing the
zero-level contours of the real and imaginary parts of the quasipolynomial and locating the intersection
points of the contours. On the basis of performed analysis of the features of both the algorithms, I have
chosen the latter for the practical realization.  The mapping based algorithm has proved to be quite universal.
It may be used to compute the roots of polynomials, quasipolynomials and the exponential polynomials.
Thus, the mapping based algorithm can be used to compute poles and zeros of both retarded and
neutral systems. Moreover, also the essential spectrum of the neutral systems can be computed. The
algorithm can be used to locate the roots in an arbitrarily placed region in the complex plane (not only the
rightmost roots can be computed). The most important drawback of the mapping based rootfinder is the
incapability to deal with the ill-conditioned (quasi)polynomials. However, this feature is the inherent feature
of the non-iterative polynomial rootfinding algorithms. The applicability of the mapping based rootfinder is
comparable with the algorithm used in Matlab function roots. The incapability of dealing with the ill-
conditioned (quasi)polynomials restricts the applicability of the mapping based rootfinder to the low degree
(quasi)polynomials (let us say up to n<20). It is due to fact that the higher degree (quasi)polynomials are
likely to be ill-conditioned. Most of the algorithms for analysis and control synthesis of TDS presented in
this thesis are build on this mapping based rootfinder.

The other objectives of the thesis stated in chapter 2 are solved in chapter 4. First, according to the
objective 2, the features of the first order anisochronic model are investigated. Especially, the potentials of
approximating the dominant poles using the first order anisochronic model with delay in denominator
are studied. The results achieved show that two parameters of the denominator, i.e., time constant and time
delay, allow the dominant couple of the poles to be placed arbitrarily in the complex plane. Taking into
account that the system dead time may be approximated by the numerator delay, the first order
anisochronic model may be used to approximate the dynamics of the plants conventionally described
by considerably higher order delay-free models. Secondly, the first order anisochronic model is further
extended to approximate also the effect of the dominant zeros. The extension is performed by involving
an exponential polynomial in the numerator of the transfer function of the anisochronic first order model. By
means of the parameters of the exponential polynomial, the dominant zeros may be placed arbitrarily in the
complex plane. Using this model, the dynamics of plants with zero-effect, e. g., non-minimum phase
systems can be approximated. The drawback of involving the exponential polynomial in the numerator of
the model is given by the fact that besides the dominant zeros assigned, infinitely many zeros with large
imaginary parts (distributed in a vertical strip of the complex plane) are introduced into the system
dynamics. On the other hand, as has been shown in the thesis, the model may be used to approximate quite
broad class of plant dynamics.

The third objective of the thesis deals with the basic feature of TDS - with the infinite spectrum of
poles of TDS. Even though the spectrum of poles of TDS is infinite, the number of poles that determine the
dynamics is low as a rule. In the thesis, I have designed an original pole-significance evaluating criterion.
The criterion is based on the generalized Heaviside expansion of the input-output transfer function of
TDS. First, the poles of TDS that are closest to the complex plane origin, which are likely to be the
dynamics determining poles, are computed using the mapping based algorithm. The significance evaluating
criterion evaluate the weighting functions of the transfer functions resulting from the Heaviside expansion.
Particularly, the absolute values of the differences between the maxima and minima of the weighting
functions are evaluated. The larger is the value of the criterion, the pole is more significant. The evaluation
of the pole significance is important in the process of selecting the most important modes of the systems
dynamics. The selection of the most important modes of the dynamics may be useful in approximating the
TDS by a finite order model. It is also useful to define the group of most decisive poles before applying the
pole placement method.
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In order to fulfil the fourth objective, I have investigated features of the methods for pole placement
using the proportional feedback from the state variables applied to TDS. First, the fundamentals of the
gradient based state variable feedback design are summarized. The algorithm presented arises from the
linearity of the closed loop characteristic function with respect to the feedback gains and can be used for
direct pole placement. The poles being prescribed may be both real and complex conjugate, either single or
multiple. The values of the feedback gain coefficients result as the solution of the obtained set of linear
equations. The maximum number of poles being prescribed is restricted by the order of the system n, i.e., by
the number of available feedback loops. Using the method for direct pole placement, the infinity of the
spectrum of TDS has to be taken into consideration. The fact that we can prescribe the position only to n
poles, while the other poles (infinitely many) are placed spontaneously, rather restricts the applicability
of the method. To obtain satisfactory result, the following procedure for pole placement using gradient based
method is suggested. First, the poles of the original system are computed using, e.g., mapping based
rootfinder. Then, the pole significance evaluating criterion is used to define the dynamics determining poles.
The third step of the procedure consist in prescribing the new positions to these most significant poles in
order to stabilize or improve the system dynamics. In the fourth step of the procedure, applying the
computed values of feedback gain coefficients, the new spectrum of the feedback system poles has to be
checked using the rootfinder. If some of the non-prescribed poles are placed into the undesirable positions,
the result of the procedure cannot be accepted and the whole procedure has to be repeated with the new
values of the prescribed poles. If the dominance of the prescribed poles is preserved after the procedure, the
poles may be further shifted if the result achieved is not satisfactory yet. In this way, the pole placement is
accomplished in several steps. Even though this pole placement procedure is rather heuristic, it has
proved to be efficient in modifying the TDS dynamics.

Secondly I have modified the method of gradient based pole placement so that it might be
used in the pole placement method known as continuous pole placement originally designed by
Michiels, et al.,(2002). The idea of the method consists in shifting only the real parts of the rightmost poles
and monitoring the positions of the other poles. Since only the real parts of the poles are prescribed, the
characteristic function looses the linearity with respect to the parameters being computed (besides the
feedback coefficients, also the imaginary parts of the prescribed poles are computed) if the shifts are
prescribed to a complex pole. Therefore, the characteristic function is linearized and the validity of the
results achieved are accurate enough only if the prescribed shifts are small. At each step of the continuous
pole placement procedure, the rightmost spectrum of the feedback system is computed using the mapping
based rootfinder. The distribution of the feedback system poles resulting from the continuous pole
placement procedure is close to the minimal supremum of the real parts of the poles. Such a result is
convenient from the stability point of view. However dynamics determined by this pole distribution have
often undesirable features. Since only the real parts of the poles are controlled, the resultant dynamics may
be too oscillatory. On the other hand, if all the rightmost poles are real, the resultant dynamics are
overdamped. Therefore, in some cases, it is convenient apply the direct pole placement to improve further
the feedback system dynamics having resulted from the continuous pole placement. Both the methods
presented in this thesis can be applied to both retarded and neutral systems with both lumped and
distributed delays

In the last chapter, all the main results of this thesis have been successfully tested on the model of
real plant, i.e., laboratory heating system. To sum up, the main contribution of the thesis is the design of
mapping based rootfinder. As has been shown the rootfinder is a powerful tool for computing the spectra of
lower order TDS. Particularly, the applicability of the rootfinder to compute the spectra of the neutral
systems is a unique result. As has been shown, the knowledge of the spectrum of TDS is quite important
(more that in case of delay free systems) in analyzing the system dynamics and designing the control. Note
that most of the results presented in this thesis have already bee published. To conclude all the objectives
stated in chapter 2 have been fulfilled.

Acknowledgement: The research presented in the thesis was supported by the Ministry of Education of the
Czech Republic under the Project LN 00 B096.
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